Skip to main content

Carrageenan Reduces Bone Morphogenetic Protein-4 (BMP4) and Activates the Wnt/β-Catenin Pathway in Normal Human Colonocytes

Abstract

Carrageenans are highly sulfated polysaccharides that are widely used as food additives in the Western diet, in order to improve the texture of processed foods. Although native and degraded carrageenans induce colonic ulcerations, polyps, and colorectal tumors in animal models, very little is known about the effects of carrageenan on human colonocytes. We evaluated effects of λ-carrageenan (λCGN) on the normal human colonocyte cell line NCM460, using a concentration of 1 μg/ml, about less than one tenth the average daily exposure to carrageenan in the Western diet. We measured secreted bone morphogenetic protein-4 (BMP4) in spent media and quantified its expression by quantitative RT-PCR. Wnt-related genes were measured by an oligonucleotide array. Cellular β-catenin was quantified by ELISA. We found a marked decline in secreted BMP4 (P < 0.001) following exposure of NCM460 cells to λCGN for 24 hr. Quantitative RT-PCR for BMP4 transcripts revealed 24% and 45% inhibition of expression on days 2 and 4. cDNA gene expression array of Wnt signaling pathway target genes demonstrated significant changes, including 4.5-fold induction of Wnt 9A and suppression of Dickkopf 3 and RHOU genes. Measurement of β-catenin by ELISA revealed concomitant accumulation with increases of 67.8%, 61.6%, and 73.9% on days 1, 2, and 4, compared to untreated controls. We conclude that treatment of normal human colonocytes with λCGN activated the Wnt/β-Catenin cascade and suppressed the expression and secretion of BMP4, inducing significant changes in cellular pathways that are associated with both sporadic and juvenile polyps. CGN may influence development of intestinal polyps in vivo by these mechanisms.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Tobacman JK (2003) Toxic considerations related to ingestion of carrageenan. In: Preedy VR, Watson RR (eds) Reviews in food and nutrition toxicity, vol 1. Taylor & Francis, New York, pp 204–229

    Google Scholar 

  2. Tobacman JK (2001) Review of harmful gastrointestinal effects of carrageenan in animal experiments. Environ Health Perspect 109:983–994

    Article  PubMed  CAS  Google Scholar 

  3. Food and Nutrition Board, National Research Council (1975) Estimating distribution of daily intakes of Chondrus extract (carrageenin): Committee on GRAS List Survey—Phase III. Appendix C. National Academy of Sciences, Washington, DC, pp 1–7

  4. IARC Working Group on the Evaluation of the Carcinogenic Risk of Chemicals to Humans (1983) Carrageenan. IARC Monogr Eval Carcinog Risk Hum 31:79–94

    Google Scholar 

  5. U.S. Food and Drug Administration (1992) Processed Eucheuma seaweed. Working paper

  6. Informatics Inc. (1972) Monograph on carrageenan. National Technical and Information Service, Arlington, VA, pp 1–68

  7. Benitz KF, Goldberg L, Coulston F (1973) Intestinal effects of carrageenans in the rhesus monkey (Macaca mulatta). Food Cosmet Toxicol 11:565–575

    Article  PubMed  CAS  Google Scholar 

  8. Elsayed YA, Nakagawa K, Ichikawa K, Ohkawara S, Sueishi K (1995) Expression of tissue factor and interleukin-1 beta in a novel rabbit model of disseminated intravascular coagulation induced by carrageenan and lipopolysaccharide. Pathobiology 63:328–340

    Article  PubMed  CAS  Google Scholar 

  9. Ianaro A, Xu D, O'Donnell CA, Di Rosa M, Liew FY (1995) Expression of TGF-beta in attenuated Salmonella typhimurium: oral administration leads to the reduction of inflammation, IL-2 and IFN-gamma, but enhancement of IL-10, in carrageenin-induced oedema in mice. Immunology 84:8–15

    PubMed  CAS  Google Scholar 

  10. Utsunomiya I, Nagai S, Ohishi S (1994) Differential effects of indomethacin and dexamethasone on cytokine production in carrageenin-induced rat pleurisy. Eur J Pharmacol 252:213–218

    Article  PubMed  CAS  Google Scholar 

  11. Cunha FQ, Poole S, Lorenzetti BB, Ferreira SH (1992) The pivotal role of tumour necrosis factor alpha in the development of inflammatory hyperalgesia. Br J Pharmacol 107:660–664

    PubMed  CAS  Google Scholar 

  12. Utsunomiya I, Nagai S, Ohishi S (1991) Sequential appearance of IL-1 and IL-6 activities in rat carrageenin-induced pleurisy. J Immunol 147:1803–1809

    PubMed  CAS  Google Scholar 

  13. Okuda Y, Hanazawa S (1986) Comparison of the activation and interleukin-1 production of mouse peritoneal macrophages by three types of purified carrageenan. Josai Shika Daigaku Kiyo 15:557–566

    PubMed  CAS  Google Scholar 

  14. Hoffman R, Burns WW 3rd, Paper DH (1995) Selective inhibition of cell proliferation and DNA synthesis by the polysulphated carbohydrate l-carrageenan. Cancer Chemother Pharmacol 36:325–334

    PubMed  CAS  Google Scholar 

  15. Belford DA, Hendry IA, Parish CR (1993) Investigation of the ability of several naturally occurring and synthetic polyanions to bind to and potentiate the biological activity of acidic fibroblast growth factor. J Cell Physiol 157:184–189

    Article  PubMed  CAS  Google Scholar 

  16. Hoffman R, Sykes D (1993) Inhibition of binding of basic fibroblast growth factor to low and high affinity receptors by carrageenans. Biochem Pharmacol 45:2348–2351

    Article  PubMed  CAS  Google Scholar 

  17. Hoffman R (1993) Carrageenans inhibit growth-factor binding. Biochem J 289:331–334

    PubMed  CAS  Google Scholar 

  18. Ishai-Michaeli R, Eldor A, Vlodavsky I (1990) Heparanase activity expressed by platelets, neutrophils, and lymphoma cells releases active fibroblast growth factor from extracellular matrix. Cell Regul 1:833–842

    PubMed  CAS  Google Scholar 

  19. Ianaro A, Xu D, O'Donnell CA, Di Rosa M, Liew FY (1995) Expression of TGF-beta in attenuated Salmonella typhimurium: oral administration leads to the reduction of inflammation, IL-2 and IFN-gamma, but enhancement of IL-10, in carrageenin-induced oedema in mice. Immunology 84:8–15

    PubMed  CAS  Google Scholar 

  20. Siegel PM, Massague J (2004) Cytostatic and apoptotic actions of TGF-β in homeostasis and cancer. Nat Rev Cancer 3:807–821

    Article  CAS  Google Scholar 

  21. Pick E, Roberts AB (2001) Suppressor and oncogenic role of transforming growth factor-β and its signaling pathways in tumorigenesis. Adv Cancer Res 83:1–54

    Article  Google Scholar 

  22. Balemans W, Van Hul W (2002) Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators. Dev Biol 250:231–250

    Google Scholar 

  23. von Bubnoff A, Cho KW (2001) Intracellular BMP signaling regulation in vertebrates: Pathway or network? Dev Biol 239:1–14

    Article  PubMed  CAS  Google Scholar 

  24. Hardwick JC, Van Den Brink GR, Bleuming SA, Ballester I, Van Den Brande JM, Keller JJ, Offerhaus GJ, Van Deventer SJ, Peppelenbosch MP (2004) Bone morphogenetic protein 2 is expressed by, and acts upon, mature epithelial cells in the colon. Gastroenterology 126:111–121

    Article  PubMed  CAS  Google Scholar 

  25. Nishanian TG, Kim JS, Foxworth A, Waldman T (2004) Suppression of tumorigenesis and activation of Wnt signaling by bone morphogenetic protein 4 in human cancer cells. Cancer Biol Ther 3:667–675

    Article  PubMed  CAS  Google Scholar 

  26. Howe JR, Blair JL, Sayed MG, Anderson ME, Mitros FA, Petersen GM, Velculescu VE, Traverso G, Vogelstein B (2001) Germline mutations of the gene encoding bone morphogenetic protein receptor 1A in juvenile polyposis. Nat Genet 28:184–187

    Article  PubMed  CAS  Google Scholar 

  27. Zhou XP, Woodford-Richens K, Lehtonen R, Kurose K, Aldred M, Hampel H, Launonen V, Virta S, Pilarski R, Salovaara R, Bodmer WF, Conrad BA, Dunlop M, Hodgson SV, Iwama T, Jarvinen H, Kellokumpu I, Kim JC, Leggett B, Markie D, Mecklin JP, Neale K, Phillips R, Piris J, Rozen P, Houlston RS, Aaltonen LA, Tomlinson IP, Eng C (2001) Germline mutations in BMPR1A/ALK3 cause a subset of cases of juvenile polyposis syndrome and of Cowden and Bannayan-Riley-Ruvalcaba syndromes. Am J Hum Genet 69:704–711

    Article  PubMed  CAS  Google Scholar 

  28. He XC, Zhang J, Tong WG, Tawfik O, Ross J, Scoville DH, Tian Q, Zeng X, He X, Wiedemann LM, Mishina Y, Li L (2004) BMP signaling inhibits intestinal stem cell self-renewal through suppression of Wnt-beta-catenin signaling. Nat Genet 36:1117–1121

    Article  PubMed  CAS  Google Scholar 

  29. Shih IM, Yu J, He TC, Vogelstein B, Kinzler KW (2000) The beta-catenin binding domain of adenomatous polyposis coli is sufficient for tumor suppression. Cancer Res 60(6):1671–1676

    PubMed  CAS  Google Scholar 

  30. Kim JS, Crooks H, Dracheva T, Nishanian TG, Singh B, Jen J, Waldman T (2002) Oncogenic beta-catenin is required for bone morphogenetic protein-4 expression in human cancer cells. Cancer Res 62:2744–48

    PubMed  CAS  Google Scholar 

  31. Moyer MP, Manzano LA, Merriman RL, Stauffer JS, Tanzer LR (1996) NCM460, a normal human colon mucosal epithelial cell line. In Vitro Cell Dev Biol Anim 32:315–317

    PubMed  CAS  Google Scholar 

  32. Yu G, Guan H, Ioanoviciu AS, Sikkander SA, Thanawiroon C, Tobacman JK, Toida T, Linhardt RJ (2002) Structural studies on κ-carrageenan derived oligosaccharides. Carbohydr Res 337:433–440

    Article  PubMed  CAS  Google Scholar 

  33. Kirikoshi H, Katoh M (2002) Expression of WRCH1 in human cancer and down-regulation of WRCH1 by beta-estradiol in MCF-7 cells. Int J Oncol 20:777–783

    PubMed  CAS  Google Scholar 

  34. Tao W, Pennica D, Xu L, Kalejta RF, Levine AJ (2001) Wrch-1, a novel member of the Rho gene family that is regulated by Wnt-1. Genes Dev 15:1796–1807

    Article  PubMed  CAS  Google Scholar 

  35. Daigo Y, Takayama I, Ponder BA, Caldas C, Ward SM, Sanders KM, Fujino MA (2004) Novel human, mouse and Xenopus genes encoding a member of the RAS superfamily of low-molecular-weight GTP-binding proteins and its downregulation in W/WV mouse jejunum. J Gastroenterol Hepatol 19:211–217

    Article  PubMed  CAS  Google Scholar 

  36. Nateri AS, Spencer-Dene B, Behrens A (2005) Interaction of phosphorylated c-Jun with TCF4 regulates intestinal cancer development. Nature 437(7056):281–285

    Article  PubMed  CAS  Google Scholar 

  37. Kuhnert F, Davis CR, Wang HT, Chu P, Lee M, Yuan J, Nusse R, Kuo CJ (2004) Essential requirement for Wnt signaling in proliferation of adult small intestine and colon revealed by adenoviral expression of Dickkopf-1. Proc Natl Acad Sci USA 101:266–271

    Article  PubMed  CAS  Google Scholar 

  38. Hoang BH, Kubo T, Healey JH, Yang R, Nathan SS, Kolb EA, Mazza B, Meyers PA, Gorlick R (2004) Dickkopf 3 inhibits invasion and motility of Saos-2 osteosarcoma cells by modulating the Wnt-beta-catenin pathway. Cancer Res 64:2734–2739

    Article  PubMed  CAS  Google Scholar 

  39. Ftouh S, Akbar MT, Hirsch SR, de Belleroche JS (2005) Down-regulation of Dickkopf 3, a regulator of the Wnt signalling pathway, in elderly schizophrenic subjects. J Neurochem 94:520–530

    Article  PubMed  CAS  Google Scholar 

  40. Ishiguro K, Kadomatsu K, Kojima T, Muramatsu H, Matsuo S, Kusugami K, Saito H, Muramatsu T (2001) Syndecan-4 deficiency increases susceptibility to kappa-carrageenan-induced renal damage. Lab Invest 81:509–516

    PubMed  CAS  Google Scholar 

  41. Zimmermann P, David G (1999) The syndecans, tuners of transmembrane signaling. FASEB J 13:S91–S100

    PubMed  CAS  Google Scholar 

  42. Tkachenko E, Rhodes JM, Simons M (2005) Syndecans: new kids on the signaling block. Circ Res 96:488–500

    Article  PubMed  CAS  Google Scholar 

  43. Polakis P (1999) The oncogenic activation of beta-catenin. Curr Opin Genet Dev 9:15–21

    Article  PubMed  CAS  Google Scholar 

  44. Bienz M, Clevers H (2000) Linking colorectal cancer to Wnt signaling. Cell 103:311–320

    Article  PubMed  CAS  Google Scholar 

  45. Polakis P (2000) Wnt signaling and cancer. Genes Dev 14:1837–1851

    PubMed  CAS  Google Scholar 

  46. Pinto D, Gregorieff A, Begthel H, Clevers H (2003) Canonical Wnt signals are essential for homeostasis of the intestinal epithelium. Genes Dev 17:1709–1713

    Article  PubMed  CAS  Google Scholar 

  47. Kirikoshi H, Sekihara H, Katoh M (2001) Expression of WNT14 and WNT14B mRNAs in human cancer, up-regulation of WNT14 by IFNgamma and up-regulation of WNT14B by beta-estradiol. Int J Oncol 19:1221–1225

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Department of Veterans Affairs and by NIDDK grants (DK68324 and DK54016) to P.K.D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne K. Tobacman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bhattacharyya, S., Borthakur, A., K. Dudeja, P. et al. Carrageenan Reduces Bone Morphogenetic Protein-4 (BMP4) and Activates the Wnt/β-Catenin Pathway in Normal Human Colonocytes. Dig Dis Sci 52, 2766–2774 (2007). https://doi.org/10.1007/s10620-006-9531-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-006-9531-4

Keywords