Skip to main content

Advertisement

Log in

Protective Effects of Nafamostat Mesilate on Liver Injury Induced by Lipopolysaccharide in Rats: Possible Involvement of CD14 and TLR-4 Downregulation on Kupffer Cells

  • Original Paper
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Nafamostat mesilate (NM) is a synthetic protease inhibitor with various biological effects. To determine its effect on liver injury related to sepsis, we investigated the effects of NM on lipopolysaccharide (LPS)-induced liver injury. Wistar rats were allocated into two groups; the NM group underwent intraperitoneal NM administration 30 min before LPS administration, and the control group underwent PBS administration. Serum AST and ALT levels were significantly decreased in NM-treated rats. Reduced levels of TNF-α, IL-1β, and IFN-γ were observed after LPS administration in NM-treated rats. No significant differences were observed in IL-6 levels between the NM and the control group. In contrast, HGF levels were significantly increased only in control rats. NM treatment decreased protein and mRNA levels of TLR-4 and CD14. Our data suggest that NM treatment has protective effects against LPS-induced hepatotoxicity through downregulation of TLR4 and CD14 in liver, which decreased TNF-α, IL-1β, and IFN-γproduction in liver.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Raetz CR, Ulevitch RJ, Wright SD, Sibley CH, Ding A, Nathan CF (1991) Gram-negative endotoxin: an extraordinary lipid with profound effects on eukaryotic signal transduction. FASEB J 5:2652–2560

    PubMed  CAS  Google Scholar 

  2. Suzuki S, Nakamura S, Serizawa A, Sakaguchi T, Konno H, Muro H (1996) Role of Kupffer cells and the spleen in modulation of endotoxin-induced liver injury after partial hepatectomy. Hepatology 24:219–225

    Article  PubMed  CAS  Google Scholar 

  3. Enomoto N, Ikejima K, Bradford B, Rivera C, Kono H, Brenner DA (1998) Alcohol causes both tolerance and sensitization of rat Kupffer cells via mechanisms dependent on endotoxin. Gastroenterology 115:443–451

    Article  PubMed  CAS  Google Scholar 

  4. Whalan C, Drew P, Maddern G (1998) Infection, sepsis and systemic inflammatory response syndrome in obstructive jaundice. J Gastroenterol Hepatol 13:354–355

    PubMed  CAS  Google Scholar 

  5. Nolan JP (1989) Intestinal endotoxins as mediators of hepatic injury—an idea whose time has come again. Hepatology 10:887–891

    PubMed  CAS  Google Scholar 

  6. Thiele DL (1989) Tumor necrosis factor, the acute phase response and the pathogenesis of alcohol liver disease. Hepatology 9:497–499

    PubMed  CAS  Google Scholar 

  7. Guarner F, Wallage JL, MacNaughton WK (1989) Endotoxin-induced ascitis formation in the rat: partial mediation by platelet activating factor. Hepatology 10:788–794

    PubMed  CAS  Google Scholar 

  8. Okajima K, Uchiba M, Murakami K (1995) Nafamostat mesilate. Cardiovasc Drug Rev 13:51–65

    CAS  Google Scholar 

  9. Paques EP, Romisch J (1991) Comparative study on the in vitro effectiveness of antithrombotic agents. Thromb Res 64:11–21

    Article  PubMed  CAS  Google Scholar 

  10. Uchiba M, Okajima K, Abe H, Okabe H, Takatsuki K (1994) Effect of nafamostat mesilate, a synthetic protease inhibitor, on tissue factor-factor VIIa complex activity. Thromb Res 74:155–161

    Article  PubMed  CAS  Google Scholar 

  11. Takahashi H, Takizawa S, Tatewaki W, Nagai K, Wada K, Hanano M, Shibata A (1989) Nafamostat mesilate (FUT-175) in the treatment of patients with disseminated intravascular coagulation. Thromb Haemost 62:372

    Google Scholar 

  12. Yoshikawa T, Murakami M, Furukawa Y, Kato H, Takemura S, Kondo M (1983) Effects of FUT–175, a new synthetic protease inhibitor on endotoxin-induced disseminated intravascular coagulation in rats. Hemostasis 13:374–378

    CAS  Google Scholar 

  13. Kikuchi M, Endo S, Inada K, Yamashita H, Takakuwa T, Nakae H, Kasai T, Baba N, Yamada Y (1995) Inhibitory effect of FUT–175 on the production of interleukin-8 and polymorphonuclear leukocyte elastase. Res Commun Mol Pathol Pharm 87:269–274

    CAS  Google Scholar 

  14. Sugita H, Ishiko T, Ikei S, Hirota M, Ogawa M (1999) FUT-175 inhibits the production of IL-6 and IL-8 in human monocytes. Res Commun Mol Pathol Pharm 103:57–64

    CAS  Google Scholar 

  15. Ikehara S, Shimamura K, Aoyama T (1985) Effects of FUT–175, a new synthetic protease inhibitor, on the development of lupus nephritis in (NZBxNZW)F1 mice. Immunology 55:494–500

    Google Scholar 

  16. Turner A, Keyhani AH, Reiner R (1981) Proteolytic enzymes released by macrophages may promote hepatic injuries in the rat model of hepatic damage. Gastroenterology 80:647–654

    Google Scholar 

  17. Turner A, Keyhani AH, Wright R (1983) The influence of endotoxin in vitro on hepatic macrophage lysosomal enzyme release in different rat model of hepatic injury. Liver 3:151–160

    Google Scholar 

  18. O'Neill LA, Dinarello CA (2000) The IL-1 receptor/toll-like receptor superfamily: crucial receptors for inflammation and host defense. Immunol Today 21:206–209

    Article  PubMed  Google Scholar 

  19. Aderem A, Ulevitch RJ (2000) Toll-like receptors in the induction of the innate immune response. Nature 408:740–745

    Article  CAS  Google Scholar 

  20. Hemmi H, Takeuchi O, Kawai T, Kaisho S, Sato H, Sanjo H (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745

    Article  PubMed  CAS  Google Scholar 

  21. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F (1999) Toll-like receptor-5 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 274:10689–10692

    Article  PubMed  CAS  Google Scholar 

  22. Rush BF Jr, Sori AJ, Murphy TF, Smith S, Flanagan JJ Jr, Machiedo GW (1998) Endotoxemia and bacteremia during hemorrhagic shock. The link between trauma and sepsis? Ann Surg 207:549–554

    Article  Google Scholar 

  23. Sedman PC, Macfie J, Sagar P, Mitchell CJ, May J, Mancey-Jones B (1994) The prevalence of gut translocation in humans. Gastroenterology 107:643–649

    PubMed  CAS  Google Scholar 

  24. Wells CL, Maddaus MA, Simmons RL (1988) Proposed mechanism for the translocation of intestinal bacteria. Rev Infect Dis 10:958–979

    PubMed  CAS  Google Scholar 

  25. Grotz MR, Deitch EA, Ding J, Xu D, Huang Q, Regel G (1999) Intestinal cytokine response after gut ischemia: role of gut barrier failure. Ann Surg 229:478–486

    Article  PubMed  CAS  Google Scholar 

  26. Pain JA, Bailey MEE (1987) Measurement of operative plasma endotoxin levels in jaundiced and non-jaundiced patients. Eur Surg Res 19:207–216

    PubMed  CAS  Google Scholar 

  27. Van Bossuyt H, Desmaretz C, Gaeta GB, Wisse E (1990) The role of bile acids in the development of endotoxemia during obstructive jaundice in the rat. J Hepatol 10:274–279

    Article  PubMed  CAS  Google Scholar 

  28. Nanji AA, Khettry U, Sadrzadeh SM (1994) Lactobacillus feeding reduces endotoxemia and severity of experimental alcoholic liver disease. Proc Soc Exp Biol Med 205:243–247

    PubMed  CAS  Google Scholar 

  29. Choda Y, Morimoto Y, Miyaso H, Shinoura S, Saito S, Yagi T, Iwagaki H, Tanaka N (2004) Failure of the gut barrier system enhances liver injury in rats—Protection of hepatocytes by gut-derived hepatocyte growth factor. Eur J Hepatogastroenterol (in press)

  30. Ogawa M, Mori Y, Ueda S, Mori T, Makino Y, Hori J, Ohto M, Wakashin M (1993) Protective effects of FUT-175 on acute massive hepatic necrosis induced in mice following endotoxin injection and immunization with liver proteins. J Hepatol 19:393–400

    Article  PubMed  CAS  Google Scholar 

  31. Inagaki H, Nonami T, Kurokawa T, Takeuchi Y, Okuda N, Nakao A, Sakamoto J (1999) Effects of nafamostat mesilate, a synthetic protease inhibitor, on immunity and coagulation after hepatic resection. Hepato-Gastroenterology 46:3223–3228

    PubMed  CAS  Google Scholar 

  32. Davie EW, Fujikawa K, Kisiel W (1991) The coagulation cascade: initiation, maintenance and regulation. Biochemistry 30:10365–10370

    Article  Google Scholar 

  33. Kaplan JE, Malik AB (1987) Thrombin-induced intravascular coagulation: role in vascular injury. Semin. Thromb Hemost 13:398–415

    Article  PubMed  CAS  Google Scholar 

  34. Hasegawa N, Husari AW, Hart WT, Kandra TG, Raffin TA (1995) Role of the coagulation system in ARDS. Chest 105:268–277

    Google Scholar 

  35. Uchiba M, Okajima K, Murakami K, Okabe H, Takatsuki K (1995) Endotoxin-induced pulmonary vascular injury is mainly mediated by activated neutrophils in rats. Thromb Res 78:117–125

    Article  PubMed  CAS  Google Scholar 

  36. Brett J, Gerlach H, Nawroth P, Steinberg S, Godman G, Stern D (1989) Tumor necrosis factor/cachectin increases permeability of endothelial cell monolayers by a mechanism involving regulatory G proteins. J Exp Med 169:1977–1991

    Article  PubMed  CAS  Google Scholar 

  37. Stephens KE, Ishizaka A, Wu ZH, Larrick JW, Raffin TA (1988) Granulocyte depletion prevents tumor necrosis factor-mediated acute lung injury in guinea pigs. Am Rev Respir Dis 138:1300–1307

    PubMed  CAS  Google Scholar 

  38. Abe H, Okajima K, Okabe H, Takatsuki K, Binder BR (1994) Granulocyte proteases and hydrogen peroxide synergistically inactivate thrombomodulin of endothelial cells in vitro. J Lab Clin Med 123:874–881

    PubMed  CAS  Google Scholar 

  39. Fujioka N, Mukaida N, Harada A, Akiyama M, Kasahara T, Kuno K (1995) Preparation of specific antibodies against murine IL-1ra and the establishment of IL-1ra as an endogenous regulator of bacteria-induced fulminant hepatitis in mice. J Leuko Biol 58:90–98

    PubMed  CAS  Google Scholar 

  40. Okamura H, Tsutsui H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T (1995) Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 378:88–91

    Article  PubMed  CAS  Google Scholar 

  41. Nicoletti F, Di Marco R, Zaccone P, Salvaggio A, Magro G, Bendtzen K (2000) Murine concanavalin A-induced hepatitis is prevented by interleukin-12 (IL-12) antibody and exacerbated by exogenous IL-12 through an interferon-gamma-dependent mechanism. Hepatology 32:728–733

    Article  PubMed  CAS  Google Scholar 

  42. Solomon KR, Kurt-Jones EA, Saladino RA, Stack AM, Dunn IF, Ferretti M (1998) Heterotrimeric G proteins physically associated with the lipopolysaccharide receptor CD14 modulate both in vivo and in vitro responses to lipopolysaccharide. J Clin Invest 102:2019–2027

    Article  PubMed  CAS  Google Scholar 

  43. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388:394–397

    Article  PubMed  CAS  Google Scholar 

  44. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F (1999) Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 274:10689–10692

    Article  PubMed  CAS  Google Scholar 

  45. Qureshi ST, Lariviere L, Leveque G, Clermont S, Moore KJ, Gros P (1999) Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med 189:615–625

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyaso, H., Morimoto, Y., Ozaki, M. et al. Protective Effects of Nafamostat Mesilate on Liver Injury Induced by Lipopolysaccharide in Rats: Possible Involvement of CD14 and TLR-4 Downregulation on Kupffer Cells . Dig Dis Sci 51, 2007–2012 (2006). https://doi.org/10.1007/s10620-006-9141-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-006-9141-1

Keywords

Navigation