Advertisement

Digestive Diseases and Sciences

, Volume 51, Issue 2, pp 326–332 | Cite as

Changes Induced in Colonocytes by Extensive Intestinal Resection in Rats

  • Hubert Lardy
  • Muriel ThomasEmail author
  • Marie-Louise Noordine
  • Aurélia Bruneau
  • Claire Cherbuy
  • Pierre Vaugelade
  • Catherine Philippe
  • Virginie Colomb
  • Pierre-Henri Duee
Surgery

Abstract

After massive intestinal resection, physiological compensatory events occur in the remnant small bowel and in the colon. The aim of our work was to study the propensity of the colon to evolve after a massive small bowel resection in rats. The resected group, where 80% of the small bowel length was removed, was compared with sham-operated rats (transected). During the 7 postoperative days, rats were fed orally or they received an elemental nutrition through a gastric catheter. PepT1 and NHE3 mRNAs encoding apical membrane transporters were not modified in the present experiment. However, two unexpected genes (I-FABP and UroR) were up-regulated in the colon following intestinal resection. These modifications occurred without an imbalance of cell cycle protein content and in a context of low short-chain fatty acid production.

Key Words

intestinal resection colonocytes gene expression proliferation markers short-chain fatty acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nightingale JM, Kamm MA, van der Sijp JR, Ghatei MA, Bloom SR, Lennard-Jones JE: Gastrointestinal hormones in short bowel syndrome. Peptide YY may be the ‘colonic brake’ to gastric emptying. Gut 39:267–272, 1996Google Scholar
  2. 2.
    Hanson WR, Osborne JW, Sharp JG: Compensation by the residual intestine after intestinal resection in the rat. II. Influence of postoperative time interval. Gastroenterology 72:701–705, 1977Google Scholar
  3. 3.
    Dunphy JL, Justice FA, Taylor RG, Fuller PJ: mRNA levels of dipeptidyl peptidase IV decrease during intestinal adaptation. J Surg Res 87:130–133, 1999CrossRefPubMedGoogle Scholar
  4. 4.
    Stern LE, Erwin CR, Falcone RA, Huang FS, Kemp CJ, Williams JL, Warner BW: cDNA microarray analysis of adapting bowel after intestinal resection. J Pediatr Surg 36:190–195, 2001PubMedGoogle Scholar
  5. 5.
    Ray EC, Avissar NE, Sax HC: Growth factor regulation of enterocyte nutrient transport during intestinal adaptation. Am J Surg 183:361–371, 2002CrossRefPubMedGoogle Scholar
  6. 6.
    Coppola CP, Gosche JR, Arrese M, Ancowitz B, Madsen J, Vanderhoof J, Shneider BL: Molecular analysis of the adaptive response of intestinal bile acid transport after ileal resection in the rat. Gastroenterology 115:1172–1178, 1998CrossRefPubMedGoogle Scholar
  7. 7.
    Nightingale JM, Lennard-Jones JE, Gertner DJ, Wood SR, Bartram CI: Colonic preservation reduces need for parenteral therapy, increases incidence of renal stones, but does not change high prevalence of gall stones in patients with a short bowel. Gut 33:1493–1497, 1992PubMedGoogle Scholar
  8. 8.
    Nightingale JM: Management of patients with a short bowel. World J Gastroenterol 7:741–751, 2001PubMedGoogle Scholar
  9. 9.
    Krishnan S, Ramakrishna BS: Butyrate and glucose metabolism in isolated colonocytes in the developing rat colon. J Pediatr Gastroenterol Nutr 26:432–436, 1998CrossRefPubMedGoogle Scholar
  10. 10.
    Roediger WE: Utilization of nutrients by isolated epithelial cells of the rat colon. Gastroenterology 83:424–429, 1982PubMedGoogle Scholar
  11. 11.
    Ziegler TR, Fernandez-Estivariz C, Gu LH, Bazargan N, Umeakunne K, Wallace TM, Diaz EE, Rosado KE, Pascal RR, Galloway JR, Wilcox JN, Leader LM: Distribution of the H+/peptide transporter PepT1 in human intestine: up-regulated expression in the colonic mucosa of patients with short-bowel syndrome. Am J Clin Nutr 75:922–930, 2002PubMedGoogle Scholar
  12. 12.
    Musch MW, Bookstein C, Rocha F, Lucioni A, Ren H, Daniel J, Xie Y, McSwine RL, Rao MC, Alverdy J, Chang EB: Region-specific adaptation of apical Na/H exchangers after extensive proximal small bowel resection. Am J Physiol Gastrointest Liver Physiol 283:G975–G985, 2002PubMedGoogle Scholar
  13. 13.
    Lardy H, Mouille B, Thomas M, Darcy-Vrillon B, Vaugelade P, Blachier F, Bernard F, Cherbuy C, Robert V, Corriol O, Ricour C, Goulet O, Duee PH, Colomb V: Enterocyte metabolism during early adaptation after extensive intestinal resection in a rat model. Surgery 135:649–656, 2004CrossRefPubMedGoogle Scholar
  14. 14.
    Colomb V, Darcy-Vrillon B, Jobert A, Guihot G, Morel MT, Corriol O, Ricour C, Duee PH: Parenteral nutrition modifies glucose and glutamine metabolism in rat isolated enterocytes. Gastroenterology 112:429–436, 1997CrossRefPubMedGoogle Scholar
  15. 15.
    Cherbuy C, Darcy-Vrillon B, Morel MT, Pegorier JP, Duee PH: Effect of germfree state on the capacities of isolated rat colonocytes to metabolize n-butyrate, glucose, glutamine. Gastroenterology 109:1890–1899, 1995CrossRefPubMedGoogle Scholar
  16. 16.
    Cherbuy C, Rieux C, Honvo-Houeto E, Thomas M, Ide C, Druesne N, Chaumontet C, Darcy-Vrillon B, Duee PH: Expression of mitochondrial HMGCoA synthase and glutaminase in the colonic mucosa is modulated by bacterial species. Eur J Biochem 271:87–95, 2004CrossRefPubMedGoogle Scholar
  17. 17.
    Andrieux C, Hibert A, A-MH, Bensaada M, Popot F, Szylit O: Ulva lactuca is poorly fermented but alters bacterial metabolism in rats inoculated with human faecal flora from methane and non-methane producers. J Sci Food Agr 77:25–30, 1998CrossRefGoogle Scholar
  18. 18.
    Chomczynski P, Sacchi N: Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159, 1987CrossRefPubMedGoogle Scholar
  19. 19.
    Raynal F, Michot B, Bachellerie JP: Complete nucleotide sequence of mouse 18 S rRNA gene: comparison with other available homologs. FEBS Lett 167:263–268, 1984CrossRefPubMedGoogle Scholar
  20. 20.
    Ford D, Howard A, Hirst BH: Expression of the peptide transporter hPepT1 in human colon: a potential route for colonic protein nitrogen and drug absorption. Histochem Cell Biol 119:37–43, 2003 (Epub 2002 Dec 2010)PubMedGoogle Scholar
  21. 21.
    Musch MW, Bookstein C, Xie Y, Sellin JH, Chang EB: SCFA increase intestinal Na absorption by induction of NHE3 in rat colon and human intestinal C2/bbe cells. Am J Physiol Gastrointest Liver Physiol 280:G687–G693, 2001PubMedGoogle Scholar
  22. 22.
    Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT: Short-chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28:1221–1227, 1987PubMedGoogle Scholar
  23. 23.
    Ritter M, Fuerst J, Woll E, Chwatal S, Gschwentner M, Lang F, Deetjen P, Paulmichl M: Na(+)/H(+)exchangers: linking osmotic dysequilibrium to modified cell function. Cell Physiol Biochem 11:1–18, 2001CrossRefPubMedGoogle Scholar
  24. 24.
    Daniel H: Molecular and integrative physiology of intestinal peptide transport. Annu Rev Physiol 66:361–384, 2004CrossRefPubMedGoogle Scholar
  25. 25.
    Thwaites DT, Kennedy DJ, Raldua D, erson CM, Mendoza ME, Bladen CL, Simmons NL: H/dipeptide absorption across the human intestinal epithelium is controlled indirectly via a functional Na/H exchanger. Gastroenterology 122:1322–1333, 2002CrossRefPubMedGoogle Scholar
  26. 26.
    Kennedy DJ, Leibach FH, Ganapathy V, Thwaites DT: Optimal absorptive transport of the dipeptide glycylsarcosine is dependent on functional Na+/H+ exchange activity. Pflugers Arch 445:139–146, 2002 (Epub 2002 Aug 2009)PubMedGoogle Scholar
  27. 27.
    Falcone RA, Jr., Shin CE, Stern LE, Wang Z, Erwin CR, Soleimani M, Warner BW: Differential expression of ileal Na(+)/H(+) exchanger isoforms after enterectomy. J Surg Res 86:192–197, 1999CrossRefPubMedGoogle Scholar
  28. 28.
    Avissar NE, Ziegler TR, Wang HT, Gu LH, Miller JH, Iannoli P, Leibach FH, Ganapathy V, Sax HC: Growth factors regulation of rabbit sodium-dependent neutral amino acid transporter ATB0 and oligopeptide transporter 1 mRNAs expression after enteretomy. JPEN J Parenter Enteral Nutr 25:65–72, 2001PubMedGoogle Scholar
  29. 29.
    Hanson WR, Osborne JW, Sharp JG: Compensation by the residual intestine after intestinal resection in the rat. I. Influence of amount of tissue removed. Gastroenterology 72:692–700, 1977Google Scholar
  30. 30.
    Rubin DC, Swietlicki EA, Wang JL, Levin MS: Regulation of PC4/TIS7 expression in adapting remnant intestine after resection. Am J Physiol 275:G506–G513, 1998PubMedGoogle Scholar
  31. 31.
    Sacks AI, Warwick GJ, Barnard JA: Early proliferative events following intestinal resection in the rat. J Pediatr Gastroenterol Nutr 21:158–164, 1995PubMedGoogle Scholar
  32. 32.
    Babakissa C, Colomb V, rieux C, Cherbuy C, Vaugelade P, Bernard F, Popot F, Corriol O, Ricour C, Duee PH, Darcy-Vrillon B: Luminal fermentation and colonocyte metabolism in a rat model of enteral nutrition. Dig Dis Sci 48:1339–1345, 2003CrossRefPubMedGoogle Scholar
  33. 33.
    Besnard P, Niot I, Poirier H, Clement L, Bernard A: New insights into the fatty acid-binding protein (FABP) family in the small intestine. Mol Cell Biochem 239:139–147, 2002CrossRefPubMedGoogle Scholar
  34. 34.
    Hallden G, Aponte GW: Evidence for a role of the gut hormone PYY in the regulation of intestinal fatty acid-binding protein transcripts in differentiated subpopulations of intestinal epithelial cell hybrids. J Biol Chem 272:12591–12600, 1997CrossRefPubMedGoogle Scholar
  35. 35.
    Mondino A, Resnati M, Blasi F: Structure and function of the urokinase receptor. Thromb Haemost 82:19–22, 1999PubMedGoogle Scholar
  36. 36.
    Wilson AJ, Gibson PR: Role of urokinase and its receptor in basal and stimulated colonic epithelial cell migration in vitro. Gut 47:105–111, 2000CrossRefPubMedGoogle Scholar
  37. 37.
    Tang Y, Swartz-Basile DA, Swietlicki EA, Yi L, Rubin DC, Levin MS: Bax is required for resection-induced changes in apoptosis, proliferation, members of the extrinsic cell death pathways. Gastroenterology 126:220–230, 2004CrossRefPubMedGoogle Scholar
  38. 38.
    Clatworthy JP, Subramanian V: Stem cells and the regulation of proliferation, differentiation and patterning in the intestinal epithelium: emerging insights from gene expression patterns, transgenic and gene ablation studies. Mech Dev 101:3–9, 2001CrossRefPubMedGoogle Scholar
  39. 39.
    Subramanian V, Meyer B, Evans GS: The murine Cdx1 gene product localises to the proliferative compartment in the developing and regenerating intestinal epithelium. Differentiation 64:11–18, 1998CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • Hubert Lardy
    • 1
  • Muriel Thomas
    • 1
    • 4
    Email author
  • Marie-Louise Noordine
    • 1
  • Aurélia Bruneau
    • 1
  • Claire Cherbuy
    • 1
  • Pierre Vaugelade
    • 1
  • Catherine Philippe
    • 2
  • Virginie Colomb
    • 3
  • Pierre-Henri Duee
    • 1
  1. 1.Laboratoire de Nutrition et de sécurité alimentaireINRAJouy en Josas
  2. 2.Unité d'écologie et de physiologie du système digestifINRAJouy en Josas
  3. 3.Pediatric Gastroenterology and NutritionNecker-Enfants Malades HospitalParisFrance
  4. 4.Laboratoire de Nutrition et de sécurité alimentaireINRAJouy en JosasFrance

Personalised recommendations