Skip to main content

Advertisement

Log in

Genetic Polymorphisms of GSTT1, GSTM1, GSTP1, MnSOD, and Catalase in Nonhereditary Chronic Pancreatitis: Evidence of Xenobiotic Stress and Impaired Antioxidant Capacity

  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Epidemiological studies have demonstrated a variety of potential environmental factors that may alter susceptibility to chronic pancreatitis (CP) through oxidative/xenobiotic stress; however, a direct causal and mechanistic role has not been established. We aimed (1) to determine the prevalence of functional genetic polymorphisms in the antioxidant enzymes, glutathione S-transferase GSTM-1, GSTP-1, and GSTT-1, manganese superoxide dismutase, and catalase in CP and (2) to reveal evidence of oxidative stress in patients with CP by measuring whole-blood glutathione redox status. In total, 122 patients with CP (75 alcohol-induced [AlCP], 33 idiopathic [ICP], and 13 hereditary) and 245 age- and sex-matched controls were recruited. The prevalence of the functional GSTT-1 genotype (GSTT-1*A) was significantly higher in CP (88.5%) compared to healthy controls (76%; χ2 = 7.26, P = 0.007). Stratification to disease etiology demonstrated that the GSTT-1*A genotype was also significantly more prevalent among patients with ICP (94%; P = 0.02; 95% CI, 0.04–9.16) but not in those with AlCP. In 22 patients with stable CP, the whole-blood glutathione concentration (median [IQR]: 72 μmol/L [21–181 μmol/L]) and the glutathione redox ratio (GSH/GSSG) (median [IQR]: 9 (3–77]) were significantly reduced compared to those in 20 healthy volunteers (median [IQR]: 815 μmol/L [679–1148 μmol/L], P < 0.001, and 96 [52–347], P = 0.005, respectively). We conclude that the GSTT-1 functional genotype is associated with ICP. Evidence of altered glutathione redox status suggests that this disease modification may be a consequence of oxidative stress or the bioactivation of xenobiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maisonneuve P, Lowenfels AB: Chronic pancreatitis and pancreatic cancer. Dig Dis 20(1):{3}2–37, 2002

    PubMed  Google Scholar 

  2. Bourliere M, Barthet M, Berthezene P, et al.: Is tobacco a risk factor for chronic pancreatitis and alcoholic cirrhosis? Gut 32(11):1392–1395, 1991

    PubMed  Google Scholar 

  3. Loft S, Poulsen HE: Cancer risk and oxidative DNA damage in man. J Mol Med 74(6):297–312, 1996

    PubMed  Google Scholar 

  4. Kadlubar FF, Anderson KE, Haussermann S, et al.; Comparison of DNA adduct levels associated with oxidative stress in human pancreas. Mutat Res 405(2):125–133, 1998

    PubMed  Google Scholar 

  5. Li D: Molecular epidemiology of pancreatic cancer. Cancer J 7(4):259–265, 2001

    PubMed  Google Scholar 

  6. Wang M, Abbruzzese JL, Friess H, Hittelman WN, Evans DB, Abbruzzese MC, Chiao P, Li D: DNA adducts in human pancreatic tissues and their potential role in carcinogenesis Cancer Res 58(1):38–41, 1998

    PubMed  Google Scholar 

  7. Li D, Firozi PF, Zhang W, Shen J, DiGiovanni J, Lau S, Evans D, Friess H, Hassan M, Abbruzzese JL: DNA adducts, genetic polymorphisms, and K-ras mutation in human pancreatic cancer. Mutat Res 513(1–2):37–48, 2002

    PubMed  Google Scholar 

  8. Cullen JJ, Mitros FA, Oberley LW: Expression of antioxidant enzymes in diseases of the human pancreas: another link between chronic pancreatitis and pancreatic cancer. Pancreas 26(1):23–27, 2003

    PubMed  Google Scholar 

  9. Halliwell B, Gutteridge JM: Free radicals and antioxidant protection: mechanisms and significance in toxicology and disease. Hum Toxicol 7(1){:}7–13, 1988

    PubMed  Google Scholar 

  10. Rahman SH, Ibrahim K, Larvin M, Kingsnorth A, McMahon MJ: Association of antioxidant enzyme gene polymorphisms and glutathione status with severe acute pancreatitis. Gastroenterology 126:1312–1322, 2004

    PubMed  Google Scholar 

  11. Siedegard J, Vorachek WR, Pero RW, et al.: Hereditary differences in the expression of human glutathione transferase active on trans-stilbene oxide are due to a gene deletion. Proc Natl Acad Sci USA 85:7293–7297, 1988

    PubMed  Google Scholar 

  12. Pemble S, Schroeder KR, Spencer SR, et al.: Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J 300:271–276, 1994

    PubMed  Google Scholar 

  13. Ahmad H, Wilson DE, Fritz RR, Singh SV, Medh RD, Nagle GT, Awasthi YC, Kurosky A: Primary and secondary structural analyses of glutathione S-transferase pi from human placenta. Arch Biochem Biophys 278(2):398–408, 1990

    PubMed  Google Scholar 

  14. Ali-Osman F, Akande O, Antoun G, Mao JX, Buolamwini J: Molecular cloning, characterization, and expression in Escherichia coli of full-length cDNAs of three human glutathione S-transferase pi gene variants. Evidence for differential catalytic activity of the encoded proteins. J Biol Chem 272(15):10004–10012, 1997

    Google Scholar 

  15. Zimniak P, Nanduri B, Pikula S, Bandorowicz-Pikula J, Singhal SS, Srivastava SK, Awasthi S, Awasthi YC: Naturally occurring human glutathione S-transferase GSTP1-1 isoforms with isoleucine and valine in position 104 differ in enzymic properties. Eur J Biochem 224(3):893–899, 1994

    PubMed  Google Scholar 

  16. Sundberg K, Johansson AS, Stenberg G, Widersten M, Seidel A, Mannervik B, Jernstrom B: Differences in the catalytic efficiencies of allelic variants of glutathione transferase P1-1 towards carcinogenic diol epoxides of polycyclic aromatic hydrocarbons. Carcinogenesis 19(3):433–436, 1998

    PubMed  Google Scholar 

  17. Harries LW, Stubbins MJ, Forman D, Howard GC, Wolf CR: Identification of genetic polymorphisms at the glutathione S-transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 18(4):641–644, 1997

    PubMed  Google Scholar 

  18. Shimoda-Matsubayashi S, Matsumine H, Kobayashi T, et al.: Structural dimorphism in the mitochondrial targeting sequence in the human manganese superoxide dismutase gene. A predictive evidence for conformational change to influence mitochondrial transport and a study of allelic association in Parkinson’s disease. Biochem Biophys Res Commun 226(2){:}561–565, 1996

    Google Scholar 

  19. Forsberg L, Lyrenas L, de Faire U, et al.: A common functional C–T substitution polymorphism in the promoter region of the human catalase gene influences transcription factor binding, reporter gene transcription and is correlated to blood catalase levels. Free Rad Biol Med 30(5):500–505, 2001

    PubMed  Google Scholar 

  20. Etemad B, Whitcomb DC: Chronic pancreatitis: diagnosis, classification and new genetic developments. Gastroenterology 120:682–707, 2001

    PubMed  Google Scholar 

  21. Wilson MH, Grant PJ, Hardie LJ, et al.: Glutathione S-transferase M1 null genotype is associated with a decreased risk of myocardial infarction. FASEB 14:791–796, 2000

    Google Scholar 

  22. Mattey DL, Hassell AB, Plant M, et al.: Association of polymorphism in glutathione S-transferase loci with susceptibility: comparison with the shared epitope. Ann Rheum Dis 58:164–169, 1999

    PubMed  Google Scholar 

  23. Garcia-Closas M, Kelsey KT, Hankinson SE, et al.: Glutathione S-transferase mu and theta polymorphisms and breast cancer susceptibility. J Natl Cancer Inst 91:1960–1694, 1999

    PubMed  Google Scholar 

  24. Katoh T, Inatomi H, Kim H, et al.: Effects of glutathione S-transferase (GST) M1 and GSTT1 genotypes on urothelial cancer risk. Cancer Lett 132:147–152, 1998

    PubMed  Google Scholar 

  25. Kim W-J, Kim H, Kim C-H, et al.: GSTT1-Null genotype is a protective factor against bladder cancer. Urology 60:913–918, 2002

    PubMed  Google Scholar 

  26. Nelson HH, Wiencke JK, Christiani DC, et al.: Ethnic differences in the prevalence of the homozygous deleted genotype of glutathione-S-transferase theta. Carcinogenesis 16:1243–1245, 1995

    PubMed  Google Scholar 

  27. Bartsch H, Malaveille C, Lowenfels AB, et al.: Genetic polymorphism of N-acetyltransferases, glutathione S-transferase M1 and NAD(P)H: quinone oxidoreductase in relation to malignant and benign pancreatic disease risk. The International Pancreatic Disease Study Group. Eur J Cancer Prev 7(3):215–223, 1998

    PubMed  Google Scholar 

  28. Frenzer A, Butler WJ, Norton ID, et al.: Polymorphism in alcohol–metabolizing enzymes, glutathione S-transferases and apolipoprotein E and susceptibility to alcohol-induced cirrhosis and chronic pancreatitis. J Gastroenterol Hepatol 17(2):177–182, 2002

    PubMed  Google Scholar 

  29. Loguerico C, Blanco FD, De Girolamo V, et al.: Ethanol consumption, amino acid and glutathione blood levels in patients with and without chronic liver disease. Alcohol Clin Exp Res 23(11):1780–1784, 1999

    PubMed  Google Scholar 

  30. Coll O, Collel A, Garcia-Ruiz C, et al.: Sensitivity of the 2-oxoglutarate carrier to alcohol intake contributes to mitochondrial glutathione depletion. Hepatology 38(3):692–702, 2003

    PubMed  Google Scholar 

  31. Zhou JF, Chen P: Studies on the oxidative stress in alcohol abusers in China. Biomed Environ Sci 14(3):180–188, 2001

    PubMed  Google Scholar 

  32. Rowe JD, Nieves E, Listowsky I: Subunit diversity and tissue distribution of human glutathione-S-transferases: interpretations based on electrospray ionization-MS and peptide sequence-specific antisera. Biochem J 325:481–486, 1997

    PubMed  Google Scholar 

  33. March TH, Jeffery EH, Wallig MA: Characterization of rat pancreatic glutathione S-transferases by chromatofocusing, reverse-phase high performance liquid chromatography, and immunohistochemistry. Pancreas 17:217–228, 1998

    PubMed  Google Scholar 

  34. Moore MA, Makino T, Tsuchida S, et al.: Altered drug metabolising potential of acinar cell lesions induced in rat pancreas by hydroxyaminoquinoline 1-oxide. Carcinogenesis 8:1089–1094, 1987

    PubMed  Google Scholar 

  35. Meyer DJ, Coles B, Pemble SE, et al.: Theta, a new class of glutathione transferases purified from rat and man. Biochem J 274:409–414, 1991

    PubMed  Google Scholar 

  36. Mannervik B, Awasthi YC, Board PG, et al.: Nomenclature for human glutathione transferases. Biochem J 282:305–308, 1992

    PubMed  Google Scholar 

  37. Kraus P, Kloft HD: The activity of glutathione-S-transferases in various organs of the rat. Enzyme 25(3):158–160, 1980

    PubMed  Google Scholar 

  38. Kaplowitz N: Physiological significance of glutathione S-transferases. Am J Physiol 239:G444, 1980

    Google Scholar 

  39. Baron J, Voigt JM, Whitter TB, et al.: Identification of intratissue sites for xenobiotic activation and detoxication. Adv Exp Med Biol 197:119–144, 1986

    PubMed  Google Scholar 

  40. Schulz HU, Niederau C: Oxidative stress induced changes in pancreatic acinar cells: insights from in vitro studies. Hepato–Gastroenterology 41:309–312, 1994

    PubMed  Google Scholar 

  41. Landi S: Mammalian class theta GST and differential susceptibility to carcinogens: a review. Mutat Res 463(3):247–283, 2000

    PubMed  Google Scholar 

  42. Monks TJ, Lau SS: The pharmacology and toxicology of polyphenolic-glutathione conjugates. Annu Rev Pharmacol Toxicol 38:229–255, 1998

    PubMed  Google Scholar 

  43. Schoenberg MH, Buchler M, Pietrzyk C, et al.: Lipid peroxidation and glutathione metabolism in chronic pancreatitis. Pancreas 10(1):36–43, 1995

    PubMed  Google Scholar 

  44. Braganza JM: The pathogenesis of chronic pancreatitis. QJM 89(4):243–250, 1996

    PubMed  Google Scholar 

  45. Sandle LN, Braganza JM: An evaluation of the low-pH enzymatic assay of urinary D-glucaric acid, and its use as a marker of enzyme induction in exocrine pancreatic disease. Clin Chim Acta 162(3):245–256, 1987

    PubMed  Google Scholar 

  46. Whitcomb DC, Gorry MC, Preston RA, et al.: Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nat Genet 14:141–145, 1996

    PubMed  Google Scholar 

  47. Witt H, Luck W, Hennies HC, et al.: Mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with chronic pancreatitis. Nat Genet 25:213–216, 2000

    PubMed  Google Scholar 

  48. Pfützer RH, Barmada MM, Brunskill APJ, et al.: SPINK1/PSTI polymorphisms act as disease modifiers in familial and idiopathic chronic pancreatitis. Gastroenterology 119:615–623, 2000

    PubMed  Google Scholar 

  49. Sharer N, Schwarz M, Malone G, et al.: Mutations of the cystic fibrosis gene in patients with chronic pancreatitis. N Engl J Med 339:645–652, 1998

    PubMed  Google Scholar 

  50. Cohn JA, Friedman KJ, Noone PG, et al.: Relation between mutations of the cystic fibrosis gene and idiopathic pancreatitis. N Engl J Med 339:653–658, 1998

    PubMed  Google Scholar 

  51. Threadgold J, Greenhalf W, Ellis I, et al.: The N34S mutation of SPINK1 (PSTI) is associated with a familial pattern of idiopathic chronic pancreatitis but does not cause the disease. Gut 50(5):675–681, 2002

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakhawat Hussain Rahman MBChB, MD, MRCS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahman, S.H., Nanny, C., Ibrahim, K. et al. Genetic Polymorphisms of GSTT1, GSTM1, GSTP1, MnSOD, and Catalase in Nonhereditary Chronic Pancreatitis: Evidence of Xenobiotic Stress and Impaired Antioxidant Capacity. Dig Dis Sci 50, 1376–1383 (2005). https://doi.org/10.1007/s10620-005-2790-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-005-2790-7

Key Words

Navigation