Digestive Diseases and Sciences

, Volume 50, Issue 3, pp 415–424 | Cite as

How to Make a Barrett Esophagus: Pathophysiology of Columnar Metaplasia of the Esophagus

  • Philippe G. GuillemEmail author
Review Article


Barrett esophagus is defined as a specialized intestinal replacing the squamous epithelium of the esophageal mucosa in response to gastroesophageal reflux. Barrett metaplasia is a healing process that develops to protect the esophagus from further damage. Although mechanisms by which Barrett metaplasia evolves toward dysplasia and adenocarcinoma have been extensively studied, the process by which squamous epithelium is replaced by specialized intestinal metaplasia is poorly understood. Barrett esophagus develops when defense mechanisms in the esophageal mucosa (luminal secretion of mucus, bicarbonate, growth factors, etc.) are overwhelmed by an ongoing cycle of mucosal injury and repair. Hydrogen ion, pepsin, trypsin, and bile acids are considered harmful agents that synergistically invade the esophageal mucosa. Areas of destroyed squamous epithelium are then progressively reepithelized by a columnar epithelium that may originate from multipotent stem cells located within the basal layer of the normal esophageal mucosa or in the ducts of submucosal glands.


esophagus metaplasia Barrett pathophysiology acid reflux bile reflux 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barrett NR: Chronic peptic ulcer of the oesophagus and oesophagitis. Br J Surg 38:175–182, 1950PubMedCrossRefGoogle Scholar
  2. 2.
    Lortat-Jacob JL: L’endobrachyoesophage. Ann Chir 11:1247–1254, 1957Google Scholar
  3. 3.
    Hameeteman W, Tytgat GN, Houthoff HJ, van den Tweel JG: Barrett’s esophagus: development of dysplasia and adenocarcinoma. Gastroenterology 96:1249–1256, 1989PubMedGoogle Scholar
  4. 4.
    Weinstein WM, Ippoliti AF: The diagnosis of Barrett’s esophagus: goblets, goblets, goblets. Gastrointest Endosc 44:91–95, 1996PubMedCrossRefGoogle Scholar
  5. 5.
    Barrett NR: Benign stricture in the lower esophagus. J Thorac Cardiovasc Surg 43:703–708, 1962Google Scholar
  6. 6.
    Snyder JD, Goldman H: Barrett’s esophagus in children and young adults. Frequent association with mental retardation. Dig Dis Sci 35:1185–1189, 1990PubMedCrossRefGoogle Scholar
  7. 7.
    Jochem VJ, Fuerst PA, Fromkes JJ: Familial Barrett’s esophagus associated with adenocarcinoma. Gastroenterology 102:1400–1402, 1992PubMedGoogle Scholar
  8. 8.
    Hassall E, Israel DM, Davidson AG, Wong LT: Barrett’s esophagus in children with cystic fibrosis: not a coincidental association. Am J Gastroenterol 88:1934–1938, 1993PubMedGoogle Scholar
  9. 9.
    Winters C Jr, Spurling TJ, Chobanian SJ, et al.: Barrett’s esophagus. A prevalent, occult complication of gastroesophageal reflux disease. Gastroenterology 92:118–124, 1987PubMedGoogle Scholar
  10. 10.
    Jankowski JA, Wright NA, Meltzer SJ, Triadafilopoulos G, Geboes K, Casson AG, Kerr D, Young LS: Molecular evolution of the metaplasia-dysplasia-adenocarcinoma sequence in the esophagus. Am J Pathol 154:965–973, 1999PubMedGoogle Scholar
  11. 11.
    DeMeester TR, Attwood SE, Smyrk TC, Therkildsen DH, Hinder RA: Surgical therapy in Barrett’s esophagus. Ann Surg 212:528–540; discussion 540–522, 1990PubMedCrossRefGoogle Scholar
  12. 12.
    Stein HJ, Hoeft S, DeMeester TR: Functional foregut abnormalities in Barrett’s esophagus. J Thorac Cardiovasc Surg 105:107–111, 1993PubMedGoogle Scholar
  13. 13.
    Stein HJ, Barlow AP, DeMeester TR, Hinder RA: Complications of gastroesophageal reflux disease. Role of the lower esophageal sphincter, esophageal acid and acid/alkaline exposure, and duodenogastric reflux. Ann Surg 216:35–43, 1992PubMedCrossRefGoogle Scholar
  14. 14.
    Mulholland MW, Reid BJ, Levine DS, Rubin CE: Elevated gastric acid secretion in patients with Barrett’s metaplastic epithelium. Dig Dis Sci 34:1329–1334, 1989PubMedCrossRefGoogle Scholar
  15. 15.
    Guillem P, Billeret V, Buisine MP, Flejou JF, Lecomte-Houcke M, Degand P, Aubert JP, Triboulet JP, Porchet N: Mucin gene expression and cell differentiation in human normal, premalignant and malignant esophagus. Int J Cancer 88:856–861, 2000PubMedCrossRefGoogle Scholar
  16. 16.
    Namiot Z, Sarosiek J, Marcinkiewicz M, Edmunds MC, McCallum RW: Declined human esophageal mucin secretion in patients with severe reflux esophagitis. Dig Dis Sci 39:2523–2529, 1994PubMedCrossRefGoogle Scholar
  17. 17.
    Brown CM, Snowdon CF, Slee B, Sandle LN, Rees WD: Effect of topical oesophageal acidification on human salivary and oesophageal alkali secretion. Gut 36:649–653, 1995PubMedCrossRefGoogle Scholar
  18. 18.
    Gray MR, Donnelly RJ, Kingsnorth AN: Role of salivary epidermal growth factor in the pathogenesis of Barrett’s columnar lined oesophagus. Br J Surg 78:1461–1466, 1991PubMedCrossRefGoogle Scholar
  19. 19.
    Filipe MI, Jankowski J: Growth factors and oncogenes in Barrett’s oesophagus and gastric metaplasia. Endoscopy 25:637–641, 1993PubMedCrossRefGoogle Scholar
  20. 20.
    Namiot Z, Yu ZJ, Piascik R, Hetzel DP, McCallum RW, Sarosiek J: Modulatory effect of esophageal intraluminal mechanical and chemical stressors on salivary prostaglandin E2 in humans. Am J Med Sci 313:90–98, 1997PubMedCrossRefGoogle Scholar
  21. 21.
    Tobey NA, Reddy SP, Khalbuss WE, Silvers SM, Cragoe EJ, Jr., Orlando RC: Na(+)-dependent and -independent Cl/HCO3 exchangers in cultured rabbit esophageal epithelial cells. Gastroenterology 104:185–195, 1993PubMedGoogle Scholar
  22. 22.
    Hollwarth ME, Smith M, Kvietys PR, Granger DN: Esophageal blood flow in the cat. Normal distribution and effects of acid perfusion. Gastroenterology 90:622–627, 1986PubMedGoogle Scholar
  23. 23.
    Bremner CG, Lynch VP, Ellis FH, Jr.: Barrett’s esophagus: Congenital or acquired? An experimental study of esophageal mucosal regeneration in the dog. Surgery 68:209–216, 1970PubMedGoogle Scholar
  24. 24.
    Khalbuss WE, Marousis CG, Subramanyam M, Orlando RC: Effect of HCl on transmembrane potentials and intracellular pH in rabbit esophageal epithelium. Gastroenterology 108:662–672, 1995PubMedCrossRefGoogle Scholar
  25. 25.
    Carney CN, Orlando RC, Powell DW, Dotson MM: Morphologic alterations in early acid-induced epithelial injury of the rabbit esophagus. Lab Invest 45:198–208, 1981PubMedGoogle Scholar
  26. 26.
    Tobey NA, Reddy SP, Keku TO, Cragoe EJ, Jr., Orlando RC: Mechanisms of HCl-induced lowering of intracellular pH in rabbit esophageal epithelial cells. Gastroenterology 105:1035–1044, 1993PubMedGoogle Scholar
  27. 27.
    Snow JC, Goldstein JL, Schmidt LN, Lisitza P, Layden TJ: Rabbit esophageal cells show regulatory volume decrease: ionic basis and effect of pH. Gastroenterology 105:102–110, 1993PubMedGoogle Scholar
  28. 28.
    Tobey NA, Cragoe EJ Jr., Orlando RC: HCl-induced cell edema in rabbit esophageal epithelium: A bumetanide-sensitive process. Gastroenterology 109:414–421, 1995PubMedCrossRefGoogle Scholar
  29. 29.
    Orlando RC, Bryson JC, Powell DW: Mechanisms of H+ injury in rabbit esophageal epithelium. Am J Physiol 246:G718–G724, 1984PubMedGoogle Scholar
  30. 30.
    De Backer A, Haentjens P, Willems G: Hydrochloric acid. A trigger of cell proliferation in the esophagus of dogs. Dig Dis Sci 30:884–890, 1985PubMedCrossRefGoogle Scholar
  31. 31.
    Sandler AD, Schmidt C, Richardson K, Murray J, Maher JW: Regulation of distal esophageal mucosal blood flow: the roles of nitric oxide and substance P. Surgery 114:285–293; discussion 293–284, 1993PubMedGoogle Scholar
  32. 32.
    Gillen P, Keeling P, Byrne PJ, West AB, Hennessy TP: Experimental columnar metaplasia in the canine oesophagus. Br J Surg 75:113–115, 1988PubMedCrossRefGoogle Scholar
  33. 33.
    Fitzgerald RC, Omary MB, Triadafilopoulos G: Dynamic effects of acid on Barrett’s esophagus. An ex vivo proliferation and differentiation model. J Clin Invest 98:2120–2128, 1996PubMedCrossRefGoogle Scholar
  34. 34.
    Safaie-Shirazi S: Effect of pepsin on ionic permeability of canine esophageal mucosa. J Surg Res 22:5–8, 1977PubMedCrossRefGoogle Scholar
  35. 35.
    Lillemoe KD, Johnson LF, Harmon JW: Alkaline esophagitis: a comparison of the ability of components of gastroduodenal contents to injure the rabbit esophagus. Gastroenterology 85:621–628, 1983PubMedGoogle Scholar
  36. 36.
    Lillemoe KD, Johnson LF, Harmon JW: Role of the components of the gastroduodenal contents in experimental acid esophagitis. Surgery 92:276–284, 1982PubMedGoogle Scholar
  37. 37.
    Meyer W, Vollmar F, Bar W: Barrett-esophagus following total gastrectomy. A contribution to its pathogenesis. Endoscopy 11:121–126, 1979PubMedCrossRefGoogle Scholar
  38. 38.
    Seto Y, Kobori O: Role of reflux oesophagitis and acid in the development of columnar epithelium in the rat oesophagus. Br J Surg 80:467–470, 1993PubMedCrossRefGoogle Scholar
  39. 39.
    Orlando RC, Powell DW, Carney CN: Pathophysiology of acute acid injury in rabbit esophageal epithelium. J Clin Invest 68:286–293, 1981PubMedCrossRefGoogle Scholar
  40. 40.
    Kauer WK, Peters JH, DeMeester TR, Ireland AP, Bremner CG, Hagen JA: Mixed reflux of gastric and duodenal juices is more harmful to the esophagus than gastric juice alone. The need for surgical therapy re-emphasized. Ann Surg 222:525–531, 1995PubMedGoogle Scholar
  41. 41.
    Fein M, Ireland AP, Ritter MP, Peters JH, Hagen JA, Bremner CG, DeMeester TR: Duodenogastric reflux potentiates the injurious effects of gastroesophageal reflux. J Gastrointest Surg 1:27–33, 1997CrossRefPubMedGoogle Scholar
  42. 42.
    Safaie-Shirazi S, DenBesten L, Zike WL: Effect of bile salts on the ionic permeability of the esophageal mucosa and their role in the production of esophagitis. Gastroenterology 68:728–733, 1975PubMedGoogle Scholar
  43. 43.
    Chung RS, Johnson GM, Denbesten L: Effect of sodium taurocholate and ethanol on hydrogen ion absorption in rabbit esophagus. Am J Dig Dis 22:582–588, 1977PubMedCrossRefGoogle Scholar
  44. 44.
    Harmon JW, Johnson LF, Maydonovitch CL: Effects of acid and bile salts on the rabbit esophageal mucosa. Dig Dis Sci 26:65–72, 1981PubMedCrossRefGoogle Scholar
  45. 45.
    Kivilaakso E, Fromm D, Silen W: Effect of bile salts and related compounds on isolated esophageal mucosa. Surgery 87:280–285, 1980PubMedGoogle Scholar
  46. 46.
    Attwood SE, Ball CS, Barlow AP, Jenkinson L, Norris TL, Watson A: Role of intragastric and intraoesophageal alkalinisation in the genesis of complications in Barrett’s columnar lined lower oesophagus. Gut 34:11–15, 1993PubMedCrossRefGoogle Scholar
  47. 47.
    Vaezi MF, Lacamera RG, Richter JE: Validation studies of Bilitec 2000: an ambulatory duodenogastric reflux monitoring system. Am J Physiol 267:G1050–G1057, 1994PubMedGoogle Scholar
  48. 48.
    Vaezi MF, Richter JE: Role of acid and duodenogastroesophageal reflux in gastroesophageal reflux disease. Gastroenterology 111: 1192–1199, 1996PubMedCrossRefGoogle Scholar
  49. 49.
    Van Deenen LL, De Haas GH, Heensherk CH: Hydrolysis of synthetic mixed acid phospholipids by phospholipase A from human pancreas. Biochim Biophys Acta 67:295–297, 1963PubMedCrossRefGoogle Scholar
  50. 50.
    Nehra D, Howell P, Williams CP, Pye JK, Beynon J: Toxic bile acids in gastro-oesophageal reflux disease: Influence of gastric acidity. Gut 44:598–602, 1999PubMedCrossRefGoogle Scholar
  51. 51.
    Tanaka K, Fromm D: Effects of bile acid and salicylate on isolated surface and glandular cells of rabbit stomach. Surgery 93:660–663, 1983PubMedGoogle Scholar
  52. 52.
    Schweitzer EJ, Bass BL, Batzri S, Young PM, Huesken J, Harmon JW: Lipid solubilization during bile salt-induced esophageal mucosal barrier disruption in the rabbit. J Lab Clin Med 110:172–179, 1987PubMedGoogle Scholar
  53. 53.
    Batzri S, Harmon JW, Schweitzer EJ, Toles R: Bile acid accumulation in gastric mucosal cells. Proc Soc Exp Biol Med 197:393–399, 1991PubMedGoogle Scholar
  54. 54.
    Schweitzer EJ, Bass BL, Batzri S, Harmon JW: Bile acid accumulation by rabbit esophageal mucosa. Dig Dis Sci 31:1105–1113, 1986PubMedCrossRefGoogle Scholar
  55. 55.
    Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B: identification of a nuclear receptor for bile acids. Science 284:1362–1365, 1999PubMedCrossRefGoogle Scholar
  56. 56.
    Xie W, Radominska-Pandya A, Shi Y, Simon CM, Nelson MC, Ong ES, Waxman DJ, Evans RM: An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids. Proc Natl Acad Sci USA 98:3375–3380, 2001PubMedCrossRefGoogle Scholar
  57. 57.
    Goodwin B, Gauthier KC, Umetani M, Watson MA, Lochansky MI, Collins JL, Leitersdorf E, Mangelsdorf DJ, Kliewer SA, Repa JJ: Identification of bile acid precursors as endogenous ligands for the nuclear xenobiotic pregnane X receptor. Proc Natl Acad Sci USA 100:223–228, 2003PubMedCrossRefGoogle Scholar
  58. 58.
    Halvorsen JF, Semb BK: The “Barrett syndrome” (the columnar-lined lower oesophagus): an acquired condition secondary to reflux oesophagitis. A case report with discussion of pathogenesis. Acta Chir Scand 141:683–687, 1975Google Scholar
  59. 59.
    Li H, Walsh TN, O’Dowd G, Gillen P, Byrne PJ, Hennessy TP: Mechanisms of columnar metaplasia and squamous regeneration in experimental Barrett’s esophagus. Surgery 115:176–181, 1994PubMedGoogle Scholar
  60. 60.
    Hamilton SR, Yardley JH: Regnerative of cardiac type mucosa and acquisition of Barrett mucosa after esophagogastrostomy. Gastroenterology 72:669–675, 1977PubMedGoogle Scholar
  61. 61.
    Levine DS, Rubin CE, Reid BJ, Haggitt RC: Specialized metaplastic columnar epithelium in Barrett’s esophagus. A comparative transmission electron microscopic study. Lab Invest 60:418–432, 1989PubMedGoogle Scholar
  62. 62.
    Johns BAE: Developmental changes in the oesophageal epithelium in man. J Anat 86:431–439, 1952PubMedGoogle Scholar
  63. 63.
    Jabbari M, Goresky CA, Lough J, Yaffe C, Daly D, Cote C: The inlet patch: heterotopic gastric mucosa in the upper esophagus. Gastroenterology 89:352–356, 1985PubMedGoogle Scholar
  64. 64.
    Wright NA: Migration of the ductular elements of gut-associated glands gives clues to the histogenesis of structures associated with responses to acid hypersecretory state: the origins of “gastric metaplasia” in the duodenum of the specialized mucosa of barrett’s esophagus and of pseudopyloric metaplasia. Yale J Biol Med 69:147–153, 1996PubMedGoogle Scholar
  65. 65.
    Herbst JJ, Berenson MM, McCloskey DW, Wiser WC: Cell proliferation in esophageal columnar epithelium (Barrett’s esophagus). Gastroenterology 75:683–687, 1978PubMedGoogle Scholar
  66. 66.
    Glickman JN, Chen YY, Wang HH, Antonioli DA, Odze RD: Phenotypic characteristics of a distinctive multilayered epithelium suggests that it is a precursor in the development of Barrett’s esophagus. Am J Surg Pathol 25:569–578, 2001PubMedCrossRefGoogle Scholar
  67. 67.
    Shields HM, Zwas F, Antonioli DA, Doos WG, Kim S, Spechler SJ: Detection by scanning electron microscopy of a distinctive esophageal surface cell at the junction of squamous and Barrett’s epithelium. Dig Dis Sci 38:97–108, 1993PubMedCrossRefGoogle Scholar
  68. 68.
    Sawhney RA, Shields HM, Allan CH, Boch JA, Trier JS, Antonioli DA: Morphological characterization of the squamocolumnar junction of the esophagus in patients with and without Barrett’s epithelium. Dig Dis Sci 41:1088–1098, 1996PubMedCrossRefGoogle Scholar
  69. 69.
    Boch JA, Shields HM, Antonioli DA, Zwas F, Sawhney RA, Trier JS: Distribution of cytokeratin markers in Barrett’s specialized columnar epithelium. Gastroenterology 112:760–765, 1997PubMedCrossRefGoogle Scholar
  70. 70.
    Eda A, Osawa H, Satoh K, Yanaka I, Kihira K, Ishino Y, Mutoh H, Sugano K: Aberrant expression of CDX2 in Barrett’s epithelium and inflammatory esophageal mucosa. J Gastroenterol 38:14–22, 2003CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Digestive SurgeryLille University HospitalFrance
  2. 2.Department of General and Digestive SurgeryE. Herriot HospitalFrance

Personalised recommendations