Skip to main content
Log in

Federated computation: a survey of concepts and challenges

  • Published:
Distributed and Parallel Databases Aims and scope Submit manuscript

Abstract

Federated Computation is an emerging area that seeks to provide stronger privacy for user data, by performing large scale, distributed computations where the data remains in the hands of users. Only the necessary summary information is shared, and additional security and privacy tools can be employed to provide strong guarantees of secrecy. The most prominent application of federated computation is in training machine learning models (federated learning), but many additional applications are emerging, more broadly relevant to data management and querying data. This survey gives an overview of federated computation models and algorithms. It includes an introduction to security and privacy techniques and guarantees, and shows how they can be applied to solve a variety of distributed computations providing statistics and insights to distributed data. It also discusses the issues that arise when implementing systems to support federated computation, and open problems for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Agarwal, N., Kairouz, P., Liu, Z.: The skellam mechanism for differentially private federated learning. In: Advances in Neural Information Processing Systems, pp. 5052–5064 (2021). https://proceedings.neurips.cc/paper/2021/hash/285baacbdf8fda1de94b19282acd23e2-Abstract.html

  2. Bagdasaryan, E., Kairouz, P., Mellem, S., Gascón, A., Bonawitz, K.A., Estrin, D., Gruteser, M.: Towards sparse federated analytics: location heatmaps under distributed differential privacy with secure aggregation. Proc. Priv. Enhancing Technol. 2022(4), 162–182 (2022). https://doi.org/10.56553/popets-2022-0104

    Article  Google Scholar 

  3. Balle, B., Bell, J., Gascón, A., Nissim, K.: Private summation in the multi-message shuffle model. In: ACM SIGSAC Conference on Computer and Communications Security, pp. 657–676. ACM (2020). https://doi.org/10.1145/3372297.3417242

  4. Basat, R.B., Mitzenmacher, M., Vargaftik, S.: How to send a real number using a single bit (and some shared randomness). In: International Colloquium on Automata, Languages, and Programming, volume 198 of LIPIcs, pp. 25:1–25:20. Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2021). https://doi.org/10.4230/LIPIcs.ICALP.2021.25

  5. Bassily, R., Nissim, K., Stemmer, U., Thakurta, A.: Practical locally private heavy hitters. J. Mach. Learn. Res. 21, 16:1-16:42 (2020)

    MathSciNet  MATH  Google Scholar 

  6. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: CRYPTO (1991)

  7. Bell, J.H., Bonawitz, K.A., Gascón, A., Lepoint, T., Raykova, M.: Secure single-server aggregation with (poly)logarithmic overhead. In: ACM SIGSAC Conference on Computer and Communications Security, pp. 1253–1269. ACM (2020). https://doi.org/10.1145/3372297.3417885

  8. Bharadwaj, A., Cormode, G.: An introduction to federated computation. In: International Conference on Management of Data, pp. 2448–2451. ACM (2022). https://doi.org/10.1145/3514221.3522561

  9. Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H.B., Patel, S., Ramage, D., Segal, A., Seth, K.: Practical secure aggregation for privacy-preserving machine learning. In: ACM SIGSAC Conference on Computer and Communications Security, pp. 1175–1191. Association for Computing Machinery (2017). ISBN 9781450349468. https://doi.org/10.1145/3133956.3133982

  10. Bun, M., Steinke, T.: Concentrated differential privacy: simplifications, extensions, and lower bounds. In: Theory of Cryptography, volume 9985 of Lecture Notes in Computer Science, pp. 635–658 (2016). https://doi.org/10.1007/978-3-662-53641-4_24

  11. Chaudhuri, K., Guo, C., Rabbat, M.: Privacy-aware compression for federated data analysis. In: Uncertainty in Artificial Intelligence, Proceedings of the Thirty-Eighth Conference on Uncertainty in Artificial Intelligence, UAI 2022, 1–5 August 2022, Eindhoven, The Netherlands, volume 180 of Proceedings of Machine Learning Research, pp. 296–306. PMLR (2022). https://proceedings.mlr.press/v180/chaudhuri22a.html

  12. Chen, W.-N., Özgür, A., Kairouz, P.: The Poisson binomial mechanism for unbiased federated learning with secure aggregation. In: International Conference on Machine Learning, ICML 2022, 17–23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Research, pp. 3490–3506. PMLR (2022). https://proceedings.mlr.press/v162/chen22s.html

  13. Cormode, G., Bharadwaj, A.: Sample-and-threshold differential privacy: histograms and applications. In: International Conference on Artificial Intelligence and Statistics, AISTATS, volume 151 of Proceedings of Machine Learning Research, pp. 1420–1431. PMLR (2022). https://proceedings.mlr.press/v151/cormode22a.html

  14. Cormode, G., Markov, I.L.: Bit-efficient numerical aggregation and stronger privacy for trust in federated analytics. CoRR, abs/2108.01521 (2021). arxiv:abs/2108.01521

  15. Cormode, G., Markov, I.L.: Federated calibration and evaluation of binary classifiers. CoRR, abs/2210.12526 (2022). arXiv:2210.12526

  16. Cormode, G., Yi, K.: Small Summaries for Big Data. Cambridge University Press, Cambridge (2020). https://doi.org/10.1017/9781108769938

    Book  Google Scholar 

  17. Cormode, G., Jha, S., Kulkarni, T., Li, N., Srivastava, D, Tianhao, W.: Local differential privacy in practice. Tutorial at SIGMOD and KDD, Privacy at scale (2018)

  18. Cormode, G., Maddock, S., Maple, C.: Frequency estimation under local differential privacy. In: International Conference on Very Large Data Bases (VLDB) (2021)

  19. Corrigan-Gibbs, H., Boneh, D.: Prio: private, robust, and scalable computation of aggregate statistics. In: Symposium on Networked Systems Design and Implementation, NSDI, pp. 259–282. USENIX Association (2017). https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/corrigan-gibbs

  20. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J.B., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: TCC (2006)

  21. Davidson, A., Snyder, P., Quirk, E. B., Genereux, J., Livshits, B., Haddadi, H.: STAR: secret sharing for private threshold aggregation reporting. In: ACM SIGSAC Conference on Computer and Communications Security (CCS), pp. 697–710. ACM (2022). https://doi.org/10.1145/3548606.3560631

  22. Differential Privacy Team at Apple. Learning with privacy at scale. https://machinelearning.apple.com/research/learning-with-privacy-at-scale (2017)

  23. Ding, B., Kulkarni, J., Yekhanin, S.: Collecting telemetry data privately. In: Advances in Neural Information Processing Systems, pp. 3571–3580 (2017). https://proceedings.neurips.cc/paper/2017/hash/253614bbac999b38b5b60cae531c4969-Abstract.html

  24. Dwork, C., Roth, A.: The algorithmic foundations of differential privacy. Found. Trends Theoret. Comput. Sci. 9(3–4), 211–407 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves: privacy via distributed noise generation. In: EUROCRYPT International Conference on the Theory and Applications of Cryptographic Techniques, volume 4004 of Lecture Notes in Computer Science, pp. 486–503. Springer, New York (2006). https://doi.org/10.1007/11761679_29

  26. Erlingsson, Ú., Pihur, V., Korolova, A.: RAPPOR: randomized aggregatable privacy-preserving ordinal response. In: ACM SIGSAC Conference on Computer and Communications Security, pp. 1054–1067. ACM (2014). https://doi.org/10.1145/2660267.2660348

  27. Evans, D., Kolesnikov, V., Rosulek, M.: A pragmatic introduction to secure multi-party computation. Found. Trends Priv. Secur. 2(2–3), 70–246 (2018). https://doi.org/10.1561/3300000019

    Article  Google Scholar 

  28. Ghazi, B., Golowich, N., Kumar, R., Pagh, R., Velingker, A.: On the power of multiple anonymous messages. IACR Cryptol. ePrint Arch., p. 1382 (2019)

  29. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In: EUROCRYPT Annual International Conference on the Theory and Applications of Cryptographic Techniques,, volume 8441 of Lecture Notes in Computer Science, pp. 640–658. Springer, New York (2014). https://doi.org/10.1007/978-3-642-55220-5_35

  30. Huba, D., Nguyen, J., Malik, K., Zhu, R., Rabbat, M., Yousefpour, A., Wu, C.-J., Zhan, H., Ustinov, P., Srinivas, H., Wang, K., Shoumikhin, A., Min, J., Malek, M.: PAPAYA: practical, private, and scalable federated learning. In: Machine Learning and Systems (MLSys). mlsys.org, (2022). https://proceedings.mlsys.org/paper/2022/hash/f340f1b1f65b6df5b5e3f94d95b11daf-Abstract.html

  31. Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A.N., Bonawitz, K.A., Charles, Z., Cormode, G., Cummings, R., D’Oliveira, R.G.L., Eichner, H., Rouayheb, S.E., Evans, D., Gardner, J., Garrett, Z., Gascón, A., Ghazi, B., Gibbons, P.B., Gruteser, M., Harchaoui, Z., He, C., He, L., Huo, Z., Hutchinson, B., Hsu, J., Jaggi, M., Javidi, T., Joshi, G., Khodak, M., Konečný, J., Korolova, A., Koushanfar, F., Koyejo, S., Lepoint, T., Liu, Y., Mittal, P., Mohri, M., Nock, R., Özgür, A., Pagh, R., Qi, H., Ramage, D., Raskar, R., Raykova, M., Song, D., Song, W., Stich, S.U., Sun, Z., Suresh, A.T., Tramèr, F., Vepakomma, P., Wang, J., Xiong, L., Xu, Z., Yang, Q., Yu, F.X., Yu, H., Zhao, S.: Advances and open problems in federated learning. Found. Trends Mach. Learn. 14(1–2), 1–210 (2021). https://doi.org/10.1561/2200000083

    Article  Google Scholar 

  32. Machanavajjhala, A., Kifer, D., Gehrke, J., Venkitasubramaniam, M.: \(\ell \)-diversity: privacy beyond k-anonymity. ACM Trans. Knowl. Discov. Data 1(1), 3 (2007). https://doi.org/10.1145/1217299.1217302

    Article  Google Scholar 

  33. McMahan, B., Moore, E., Ramage, D., Hampson, S., y Arcas, B.A.: Communication-efficient learning of deep networks from decentralized data. In: International Conference on Artificial Intelligence and Statistics (AISTATS), volume 54 of Proceedings of Machine Learning Research, pp. 1273–1282. PMLR (2017). http://proceedings.mlr.press/v54/mcmahan17a.html

  34. Mironov, I.: Rényi differential privacy. In: IEEE Computer Security Foundations Symposium (CSF), pp. 263–275. IEEE Computer Society (2017). https://doi.org/10.1109/CSF.2017.11

  35. Nishide, T., Ohta, K.: Constant-round multiparty computation for interval test, equality test, and comparison. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 90(5), 960–968 (2007)

    Article  Google Scholar 

  36. Pagh, R., Stausholm, N.M.: Infinitely divisible noise in the low privacy regime. In: International Conference on Algorithmic Learning Theory, volume 167 of Proceedings of Machine Learning Research, pp. 881–909. PMLR (2022). https://proceedings.mlr.press/v167/pagh22a.html

  37. Peisert, S.: Trustworthy scientific computing. Commun. ACM 64(5), 18–21 (2021). https://doi.org/10.1145/3457191

    Article  Google Scholar 

  38. Pihur, V., Korolova, A., Liu, F., Sankuratripati, S., Yung, M., Huang, D., Zeng, R.: Differentially-private “draw and discard” machine learning. CoRR, abs/1807.04369, (2018). arxiv:abs/1807.04369

  39. Ramage, D., Mazzocchi, S.: Federated analytics: collaborative data science without data collection. https://ai.googleblog.com/2020/05/federated-analytics-collaborative-data.html (2020)

  40. Reisizadeh, A., Mokhtari, A., Hassani, H., Jadbabaie, A., Pedarsani, R.: Fedpaq: a communication-efficient federated learning method with periodic averaging and quantization. In: The 23rd International Conference on Artificial Intelligence and Statistics, AISTATS 2020, 26–28 (August 2020), Online [Palermo, Sicily, Italy], volume 108 of Proceedings of Machine Learning Research, pp. 2021–2031. PMLR 2020. http://proceedings.mlr.press/v108/reisizadeh20a.html

  41. Roth, E., Noble, D., Falk, B.H., Haeberlen, A.: Honeycrisp: large-scale differentially private aggregation without a trusted core. In :Proceedings of the 27th ACM Symposium on Operating Systems Principles, SOSP 2019, Huntsville, ON, Canada, October 27–30, pp. 196–210. ACM (2019). https://doi.org/10.1145/3341301.3359660

  42. Samarati, P., Sweeney, L.: Generalizing data to provide anonymity when disclosing information. In: PODS (1998)

  43. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979). https://doi.org/10.1145/359168.359176

    Article  MathSciNet  MATH  Google Scholar 

  44. Stock, P., Joulin, A., Gribonval, R., Graham, B., Jégou, H.: And the bit goes down: revisiting the quantization of neural networks. In: 8th International Conference on Learning Representations, ICLR 2020. OpenReview.net, (2020). https://openreview.net/forum?id=rJehVyrKwH

  45. Suresh, A.T., Yu, F.X., Kumar, S., McMahan, H.B.: Distributed mean estimation with limited communication. In: Proceedings of the 34th International Conference on Machine Learning , vol. 70, pp. 3329–3337. JMLR.org (2017)

  46. Vargaftik, S., Ben-Basat, R., Portnoy, A., Mendelson, G., Ben-Itzhak, Y., Mitzenmacher, M.: DRIVE: one-bit distributed mean estimation. In: Advances in Neural Information Processing Systems, pp. 362–377 (2021)

  47. Vargaftik, S., Basat, R.B., Portnoy, A., Mendelson, G., Ben-Itzhak, Y., Mitzenmacher, M.: EDEN: communication-efficient and robust distributed mean estimation for federated learning. In: International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 21984–22014. PMLR (2022). https://proceedings.mlr.press/v162/vargaftik22a.html

  48. Wang, T., Zhang, X., Feng, J., Yang, X.: A comprehensive survey on local differential privacy toward data statistics and analysis in crowdsensing. CoRR, abs/2010.05253 (2020). https://arxiv.org/abs/2010.05253

  49. Wang, T., Blocki, J., Li, N., Jha, S.: Locally differentially private protocols for frequency estimation. In: USENIX Security Symposium, pp. 729–745. USENIX Association (2017). https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/wang-tianhao

  50. Wang, Y., Lee, J., Kifer, D.: Differentially private hypothesis testing, revisited. CoRR, abs/1511.03376, (2015). http://arxiv.org/abs/1511.03376

  51. Warner, S.L.: Randomised response: a survey technique for eliminating evasive answer bias. J. Am. Stat. Assoc. 60(309), 63–69 (1965)

    Article  MATH  Google Scholar 

  52. Yang, M., Lyu, L., Zhao, J., Zhu, T., Lam, K.-Y.: Local differential privacy and its applications: a comprehensive survey. CoRR, abs/2008.03686, (2020). https://arxiv.org/abs/2008.03686

  53. Zhu, L., Liu, Z., Han, S.: Deep leakage from gradients. In: NeurIPS (2019)

Download references

Author information

Authors and Affiliations

Authors

Contributions

AB and GC prepared the tutorial upon which this survey is based, and collaborated to write and review the manuscript.

Corresponding author

Correspondence to Graham Cormode.

Ethics declarations

Competing interests

The authors are employees of Meta Platforms, Inc (“Meta”).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharadwaj, A., Cormode, G. Federated computation: a survey of concepts and challenges. Distrib Parallel Databases (2023). https://doi.org/10.1007/s10619-023-07438-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10619-023-07438-w

Keywords

Navigation