Maleki, N., Faragardi, H.R., Rahmani, A.M., Conti, M., Lofstead, J.F.: TMaR: A two-stage MapReduce scheduler for heterogeneous environments. Hum. Centric Comput. Inf. Sci 10, 42 (2020)
Article
Google Scholar
Mitsuzuka, K., Hayashi, A., Koibuchi, M., Amano, H., Matsutani, H.: In-switch approximate processing: Delayed tasks management for MapReduce applications, 2017 27th International Conference on Field Programmable Logic and Applications (FPL), pp. 1–4 (2017)
Chen, C., Lin, J., Kuo, S.: MapReduce scheduling for deadline-constrained jobs in heterogeneous cloud computing systems. IEEE Trans. Cloud Comput. 6(1), 127–140 (2018)
Article
Google Scholar
Shen, H., Sarker, A., Yu, L., Deng, F.: Probabilistic network-aware task placement for MapReduce scheduling. In: 2016 IEEE International Conference on Cluster Computing (CLUSTER), pp. 241–250 (2016)
http://hadoop.apache.org
Camacho-Rodríguez, J., Chauhan, A., Gates, A., et al.: Apache hive: From MapReduce to enterprise-grade big data warehousing. In: Proceedings of the 2019 International Conference on Management of Data, pp. 1773–1786 (2019)
Wu, Y., Li, X., Liu, J., Cui, L.: Hadoop-EDF: Large-scale distributed processing of electrophysiological signal data in hadoop MapReduce. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2265–2271 (2019)
Tiwari, N., Sarkar, S., Bellur, U., Indrawan, M.: Classification framework of MapReduce scheduling algorithms. ACM Comput. Surv. 47, 49:1-49:38 (2015)
Article
Google Scholar
Bibal Benifa, J.V.: Dejey, performance improvement of MapReduce for heterogeneous clusters based on efficient locality and replica aware scheduling (ELRAS) strategy. Wirel. Pers. Commun. 95, 2709–2733 (2017)
Article
Google Scholar
Jiang, Y., Zhu, Y., Weili, W., Li, D.: Makespan minimization for MapReduce systems with different servers. Fut. Gener. Comput. Syst. 67, 13–21 (2017)
Article
Google Scholar
Ahmad, F., Chakradhar, S.T., Raghunathan, A., Vijaykumar, T.N.: Tarazu: Optimizing MapReduce on heterogeneous clusters. ASPLOS 40, 61–74 (2012)
Article
Google Scholar
Hsieh, S., Chen, C., Chen, C., Yen, T., Hsiao, H., Buyya, R.: Novel scheduling algorithms for efficient deployment of MapReduce applications in heterogeneous computing environments. IEEE Trans. Cloud Comput. 6(4), 1080–1095 (2018)
Article
Google Scholar
Cheng, D., Rao, J., Guo, Y., Jiang, C., Zhou, X.: Improving performance of heterogeneous MapReduce clusters with adaptive task tuning. IEEE Trans. Parallel Distrib. Syst. 28(3), 774–786 (2017)
Article
Google Scholar
Rasooli, A., Down, D.G.: COSHH: A classification and optimization based scheduler for heterogeneous Hadoop systems. Future Gener Comput Syst 36, 1–15 (2014)
Article
Google Scholar
Bellatreche, L., Cuzzocrea, A., Benkrid, S.: Effectively and efficiently designing and querying parallel relational data warehouses on heterogeneous database clusters: The F&A approach. J. Database Manag. 23(4), 17–51 (2012)
Article
Google Scholar
Kerkad, A., Bellatreche, L., Richard, P., Ordonez, C., Geniet, D.: A query beehive algorithm for data warehouse buffer management and query scheduling. Int. J. Data Warehousing Mining (IJDWM) 10(3), 34–58 (2014)
Article
Google Scholar
Chi, Y., Hacigümüs, H., Hsiung, W.-P., Jeffrey, F.: Naughton: Distribution-based query scheduling. Proc. VLDB Endow. 6(9), 673–684 (2013)
Article
Google Scholar
Mansouri, N.: Cost-based job scheduling strategy in cloud computing environments. Distrib. Parallel Databases 38(2), 365–400 (2020)
Article
Google Scholar
Hagras, T., Atef, A., Mahdy, Y.B.: Greening duplication-based dependent-tasks scheduling on heterogeneous large-scale computing platforms. J. Grid Comput. 19(1), 13 (2021)
Article
Google Scholar
Zaharia, M., Konwinski, A., Joseph, A.D., Katz, R., Stoica, I.: Improving MapReduce performance in heterogeneous environments. OSDI 8, 29–42 (2008)
Google Scholar
Kwon, Y., Balazinska, M., Howe, B., et al.: SkewTune: Mitigating skew in MapReduce applications. ACM SIGMOD Int. Conf. Manag. Data 2012, 25–36 (2012)
Google Scholar
Kwon, Y., Balazinska, M., Howe, B., et al.: SkewTune in action: Mitigating skew in MapReduce applications. Proc. VLDB Endow. 2012 5(12), 1934–1937 (2012)
Article
Google Scholar
Hammoud, M., Rehman, S., Sakr, M.: A data locality and skew aware task scheduler for MapReduce in cloud computing. Bloomsbury Qatar Found. J. 2011, 1 (2011)
Google Scholar
Yu, X., Kostamaa, P.: Efficient outer join data skew handling in parallel DBMS. Proc. VLDB Endow. 2(2), 1390–1396 (2009)
Article
Google Scholar
Kwon, Y.C., Balazinska, M., Howe, B., Rolia, J.A.: Skew-resistant parallel processing of feature-extracting scientific user-defined functions. SoCC 2010, 75–86 (2010)
Google Scholar
Pericini, M.H., Leite, L.G., Carvalho-Junior, D., Francisco, H., Machado, J.C., Rezende, C.A.: MAPSkew metaheuristic approaches for partitioning skew in MapReduce. Algorithms 12(1), 5 (2019)
Article
Google Scholar
Wang, B., Jiang, J., Yang, G.: ActCap: Accelerating MapReduce on heterogeneous clusters with capability-aware data placement. INFOCOM 2015, 1328–1336 (2015)
Google Scholar
Wang, J., Li, X.: Task scheduling for MapReduce in heterogeneous networks. Clust. Comput. 19(1), 197–210 (2016)
Article
Google Scholar
Wang, M., Wu, C.Q., Cao, H., Liu, Y., Wang, Y., Hou, A.: On MapReduce scheduling in hadoop yarn on heterogeneous clusters. TrustCom/BigDataSE 2018, 1747–1754 (2018)
Google Scholar
Chen, L., Liu, Z.-H.: Energy- and locality-efficient multi-job scheduling based on MapReduce for heterogeneous datacenter. Serv. Orient. Comput. Appl. 13(4), 297–308 (2019)
Article
Google Scholar