Stonebraker, M., Cetintemel, U.: One size fits all: an idea whose time has come and gone. In: ICDE, pp. 2–11 (2015)
Bugiotti, F., Bursztyn, D., Deutsch, A., Ileana, I., Manolescu, I.: Invisible glue: scalable self-tuning multi-stores. In: Conference on innovative data systems research (CIDR) (2015)
Duggan, J., Elmore, A.J., Stonebraker, M., Balazinska, M., Howe, B., Kepner, J., Madden, S., Maier, D., Mattson, T., Zdonik, S.: The BigDAWG polystore system. SIGMOD Record 44(2), 11–16 (2015)
Article
Google Scholar
Gadepally, V., Chen, P., Duggan, J., Elmore, A.J., Haynes, B., Kepner, J., Madden, S., Mattson, T., Stonebraker, M.: The BigDawg polystore system and architecture. In: IEEE high performance extreme computing conference (HPEC), pp. 1–6 (2016)
Minpeng, Z., Tore, R.: Querying combined cloud-based and relational databases. In: International conference on cloud and service computing (CSC), pp. 330–335 (2011)
Ong, K.W., Papakonstantinou, Y., Vernoux, R.: The SQL++ semi-structured data model and query language: a capabilities survey of SQL-on-Hadoop, NoSQL and NewSQL databases. CoRR, abs/1405.3631 (2014)
Simitsis, A., Wilkinson, K., Castellanos, M., Dayal, U.: Optimizing analytic data flows for multiple execution engines. In: ACM SIGMOD, pp. 829–840 (2012)
Kolev, B., Bondiombouy, C., Valduriez, P., Jimenez-Peris, R., Pau, R., Pereira, J.: The CloudMdsQL multistore sytem. In: ACM SIGMOD, pp. 2113–2116 (2016)
Kolev, B., Valduriez, P., Bondiombouy, C., Jiménez-Peris, R., Pau, R., Pereira, J.: CloudMdsQL: querying heterogeneous cloud data stores with a common language. In: Distributed and parallel databases, vol. 34, pp. 463–503. Springer, Berlin (2015)
Bondiombouy, C., Kolev, B., Levchenko, O., Valduriez, P.: Multistore big data integration with CloudMdsQL. In: Transactions on large-scale data and knowledge-centered systems (TLDKS), pp. 48–74. Springer, Berlin (2016)
Abouzeid, A., Badja-Pawlikowski, K., Abadi, D., Silberschatz, A., Rasin, A.: HadoopDB: an architectural hybrid of MapReduce and DBMS technologies for analytical workloads. PVLDB 2, 922–933 (2009)
Google Scholar
DeWitt, D., Halverson, A., Nehme, R., Shankar, S., Aguilar-Saborit, J., Avanes, A., Flasza, M., Gramling, J.: Split query processing in Polybase. In: ACM SIGMOD, pp. 1255–1266 (2013)
Hacigümüs, H., Sankaranarayanan, J., Tatemura, J., LeFevre, J., Polyzotis, N.: Odyssey: a multi-store system for evolutionary analytics. PVLDB 6, 1180–1181 (2013)
Google Scholar
LeFevre, J., Sankaranarayanan, J., Hacıgümüs, H., Tatemura, J., Polyzotis, N., Carey, M.: MISO: souping up big data query processing with a multistore system. In: ACM SIGMOD, pp. 1591–1602 (2014)
Yuanyuan, T., Zou, T., Özcan, F., Gonscalves, R., Pirahesh, H.,: Joins for hybrid warehouses: exploiting massive parallelism in hadoop and enterprise data warehouses. In: EDBT/ICDT Conf., pp. 373–384 (2015)
Kolev, B., Pau, R., Levchenko, O., Valduriez, P., Jimenez-Peris, R., Pereira, J.: Benchmarking polystores: the CloudMdsQL experience. In: IEEE international conference on Big Data, pp. 2574–2579 (2016)
Haas, L., Kossmann, D., Wimmers, E., Yang, J.: Optmizing queries across diverse data sources. In: International conference on very large databases (VLDB), pp. 276–285 (1997)
Kolev, B., Levchenko, O., Paciti, E., Valduriez, P., Vilaca, R., Goncalves, R., Jimenez-Peris, R., Kranas, P.: Parallel polyglot query processing on heterogeneous cloud data stores with LeanXcale. In IEEE international conference on Big Data, pp. 1756–1765 (2018)
Özsu, T., Valduriez, P.: Principles of Distributed Database Systems. Springer, Berlin (2020)
Book
Google Scholar
Tomasic, A., Raschid, L., Valduriez, P.: “Scaling access to heterogeneous data sources with DISCO.” IEEE Trans. Knowl. Data Eng. 10, 808–823 (1998)
Article
Google Scholar
Bondiombouy, C., Valduriez, P.: Query processing in multistore systems: an overview. Int. J. Cloud Comput. 5(4), 309–346 (2016)
Article
Google Scholar
Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H., Wyckoff, P., Murthy, R.: Hive: a warehousing solution over a map-reduce framework. PVLDB 2, 1626–1629 (2009)
Google Scholar
Chaiken, R., Jenkins, B., Larson, P., Ramsey, B., Shakib, D., Weaver, S., Zhou, J.: SCOPE: easy and efficient parallel processing of massive data sets. PVLDB 1, 1265–1276 (2008)
Google Scholar
Zhou, J., Bruno, N., Wu, M., Larson, P., Chaiken, R., Shakib, D.: SCOPE: parallel databases meet MapReduce. PVLDB 21, 611–636 (2012)
Google Scholar
Dasgupta, S., Coakley, K., Gupta, A.: Analytics-driven data ingestion and derivation in the AWESOME polystore. In: IEEE international conference on big data, pp. 2555–2564 (2016)
Khan, Y., Zimmermann, A., Jha, A., Rebholz-Schuhmann, D., Sahay, R.: Querying web polystores. In: IEEE international conference on Big Data (2017)
Alotaibi, R., Bursztyn, D., Deutsch, A., Manolescu, I.: Towards scalable hybrid stores: constraint-based rewriting to the rescue. In: ACM SIGMOD, pp. 1660–1677 (2019)
Armbrust, M., Xin, R., Lian, C., Huai, Y., Liu, D., Bradley, J., Meng, X., Kaftan, T., Franklin, M., Ghodsi, A., Zaharia, M.: Spark SQL: relational data processing in Spark. In: ACM SIGMOD, pp. 1383–1394 (2015)
Presto—Distributed Query Engine for Big Data, https://prestodb.io/
Apache Drill—Schema-free SQL Query Engine for Hadoop, NoSQL and Cloud Storage, https://drill.apache.org/
Wang, J., Baker, T., Balazinska, M., Halperin, D., Haynes, B., Howe, B., Hutchison, D., Jain, S., Maas, R., Mehta, P., Moritz, D., Myers, B., Ortiz, J., Suciu, D., Whitaker, A., Xu, S.: The Myria big data management and analytics system and cloud service. In: Conference on innovative data systems research (CIDR) (2017)
Apache Impala, http://impala.apache.org/
Gog, I., Schwarzkopf, M., Crooks, N., Grosvenor, M.P., Clement, A., Hand, S.: Musketeer: all for one, one for all in data processing systems. In: Proceedings of the tenth european conference on computer systems (EuroSys '15). Article 2, pp. 1–16. ACM (2015)
Agrawal, D., Chawla, S., Contreras-Rojas, B., Elmagarmid, A., Idris, Y., Kaoudi, Z., Kruse, S., Lucas, J., Mansour, E., Ouzzani, M., Papotti, P., Quiané-Ruiz, J.-A., Tang, N., Thirumuruganathan, S., Troudi, A.: RHEEM: enabling cross-platform data processing: may the big data be with you! Proc. VLDB Endow. 11(11), 1414–1427 (2018)
Article
Google Scholar
Kruse, S., Kaoudi, Z., Contreras-Rojas, B., Chawla, S., Naumann, F., Quiané-Ruiz, J.-A.: RHEEMix in the data jungle: a cost-based optimizer for cross-platform systems. VLDB J. (2020). https://doi.org/10.1007/s00778-020-00612-x
Article
Google Scholar
Awada, K., Eltabakh, M., Tang, C., Al-Kateb, M., Nair, S., Au, G.: Cost estimation across heterogeneous SQL-based big data infrastructures in teradata IntelliSphere. In: EDBT, pp. 534–545 (2020)
Jiménez-Peris, R., Patiño-Martinez, M.: System and method for highly scalable decentralized and low contention transactional processing, Filed at USPTO: 2011. European Patent #EP2780832, US Patent #US9760597 (2011)
Begoli, E., Camacho-Rodriguez, J., Hyde, J., Mior, M., Lemire, D.: Apache calcite: A foundational framework for optimized query processing over heterogeneous data sources. In: ACM SIGMOD, pp. 221–230 (2018)
Darema, F.: The SPMD model: past, present and future. In: Recent advances in parallel virtual machine and message passing interface, vol. 2131. Springer, Berlin (2001)
TPC-H. http://www.tpc.org/tpch/