Distributed and Parallel Databases

, Volume 36, Issue 4, pp 643–673 | Cite as

A K-way spectral partitioning of an ontology for ontology matching

  • Peter Ochieng
  • Swaib Kyanda


Ontology matching, the process of resolving heterogeneity between two ontologies consumes a lot of computing memory and time. This problem is exacerbated in large ontology matching tasks. To address the problem of time and space complexity in the matching process, ontology partitioning has been adopted as one of the methods, however, most ontology partitioning algorithms either produce incomplete partitions or are slow in the partitioning process hence eroding the benefits of the partitioning. In this paper, we demonstrate that spectral partitioning of an ontology can generate high quality partitions geared towards ontology matching.


Spectral Partitioning Ontology Signature Matching 


  1. 1.
    Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25(1), 158–176 (2013)CrossRefGoogle Scholar
  2. 2.
    Rahm, E.: Towards large-scale schema and ontology matching. In: Bellahsene, Z., Bonifati, A., Rahm, E. (eds.) Schema Matching and Mapping, pp. 3–27. Springer, Berlin (2011)CrossRefGoogle Scholar
  3. 3.
    Steorts, R., Ventura, S., Sadinle, M., Fienberg, S.: A comparison of blocking methods for record linkage, international conference on privacy in statistical databases. In: International Conference on Privacy in Statistical Databases, pp. 253–268. Springer, Cham (2014)Google Scholar
  4. 4.
    Karlapalem, K., Li, Q.: Framework for class partitioning in object-oriented databases. Distrib. Parallel Databases 8(3), 333–366 (2000)CrossRefGoogle Scholar
  5. 5.
    Curino, C., Jones, E., Zhang, Y., Madden, S.: Schism: a workload-driven approach to database replication and partitioning. Proc. VLDB Endow. 3(1–2):48–57 (2010). CrossRefGoogle Scholar
  6. 6.
    Hamdi, F., Safar, B., Reynaud, C., Zargayouna, H.: Alignment-based Partitioning of Large-scale Ontologies, Advances in Knowledge discovery Management. Studies in Computation Intelligence. Springer, Heidelberg, pp. 251–269 (2010)CrossRefGoogle Scholar
  7. 7.
    Grau, B.C., Parsia, B., Sirin, E., Kalyanpur, A.: Modularity and Web Ontologies. In: Tenth International Conference on Principles of Knowledge Representation and Reasoning KR2006, pp. 198–209 (2006)Google Scholar
  8. 8.
    Doran, P., Tamma, V., Iannone, L.: Ontology Module Extraction for Ontology Reuse: An Ontology Engineering Perspective. In: Proceedings of 16th ACM Conference in Information and Knowledge Management, pp. 61–70 (2007)Google Scholar
  9. 9.
    Chan, P.K., Schlag, M.D., Zien, J.Y.: Spectral K-way ratio-cut partitioning and clustering. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. pp. 1088–1096 (1994)CrossRefGoogle Scholar
  10. 10.
    Spielman, D.A., Teng, S.H.: Spectral partitioning works: planar graphs and finite element meshes. Linear Algebr. Appl. 421(2–3), 284–305 (2007)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Hagen, L., Member, S., Kahng, A.B.: New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 11(9):1074–1085 (1992)CrossRefGoogle Scholar
  12. 12.
    Malik, J., Belongie, S., Leung, T.K., Shi, J.: Contour and texture analysis for image segmentation. Int. J. Comput. Vis. 43(1), 7–27 (2001)CrossRefGoogle Scholar
  13. 13.
    Pathak, J., Johnson, T.M., Chute, C.G.: Survey of modular ontology techniques and their applications in the biomedical domain. Integr. Comput. Aided Eng. 16(3), 225–242 (2009)CrossRefGoogle Scholar
  14. 14.
    Grau, B.C., Parsia, B., Sirin, E., Kalyanpur, A.: Automatic Partitioning of OWL ontologies using e-connections. In: CEUR Workshop Proceedings (2005)Google Scholar
  15. 15.
    Hu, W., Zhao, Y., Qu, Y.: Partition-based block matching of large class hierarchies. In: 1st Asian Semantic Web Conference (ASWC 2006), pp. 72–83 (2006)CrossRefGoogle Scholar
  16. 16.
    Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: A logical framework for modularity of ontologies. In: IJCAI International Joint Conference on Artificial Intelligence, pp. 298–303 (2007)Google Scholar
  17. 17.
    Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies: theory and practice. J. Artif. Intell. Res. 31, 273–318 (2008)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Del Vescovo, C., Parsia, B., Sattler, U., Schneider, T.: The modular structure of an ontology: atomic decomposition. In: IJCAI International Joint Conference on Artificial Intelligence, pp. 2232–2237 (2011)Google Scholar
  19. 19.
    Fahad, M.: Initial results for ontology matching workshop 2015 DKP-AOM : results for OAEI 2015. In: CEUR Workshop Proceedings (2015)Google Scholar
  20. 20.
    Kuśnierczyk, W.: Taxonomy-based partitioning of the Gene Ontology. J. Biomed. Inform. 41(2), 282–292 (2008)CrossRefGoogle Scholar
  21. 21.
    Schlicht, A., Stuckenschmidt, H.: A flexible partitioning tool for large ontologies. In: Proceedings—2008 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2008, pp. 482–488 (2008)Google Scholar
  22. 22.
    Algergawy, A., Babalou, S., Klan, F., König-ries, B.: OAPT : a tool for ontology analysis and partitioning. In: Proceedings of 19th International Conference on Extending Database Technology, pp. 644–647 (2016)Google Scholar
  23. 23.
    Do, H.H., Rahm, E.: Matching large schemas: approaches and evaluation. Inform. Syst. pp. 857–885 (2007)CrossRefGoogle Scholar
  24. 24.
    Rahm, E., Do, H.-H., Maßmann, S.: Matching large XML schemas. ACM SIGMOD Rec. 33(4), 26 (2004)CrossRefGoogle Scholar
  25. 25.
    Algergawy, A., Massmann, S., Rahm, E.: A clustering-based approach for large-scale ontology matching. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 415–428 (2011)CrossRefGoogle Scholar
  26. 26.
    Algergawy, A., Klan, F., Konig-Ries, B.: Partitioning-based ontology matching approaches: a comparative analysis. CEUR Workshop Proc. 1317, 180–181 (2014)Google Scholar
  27. 27.
  28. 28.
    Tobergte, D.R., Curtis, S.: Semantic web and semantic web services (2013)Google Scholar
  29. 29.
    Schlicht, A., Stuckenschmidt, H.: Criteria-based partitioning of large ontologies. In: Proceedings of the 4th International Conference on Knowledge Capture, pp. 171–172 (2007)Google Scholar
  30. 30.
    Sánchez, D., Batet, M., Isern, D., Valls, A.: Ontology-based semantic similarity: a new feature-based approach. Expert Syst. Appl. 39(9), 7718–7728 (2012)CrossRefGoogle Scholar
  31. 31.
    Bollegala, D., Matsuo, Y., Ishizuka, M.: A relational model of semantic similarity between words using automatically extracted lexical pattern clusters from the web. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing Volume 2—EMNLP ’09, p. 803 (2009)Google Scholar
  32. 32.
    Al-mubaid, H., Nguyen, H.A.: A cluster-based approach for semantic similarity in the biomedical domain. In: Proceedings of the 28th IEEE EMBS Annual International Conference, New York City, pp. 2713–2717 (2006)Google Scholar
  33. 33.
    Li, Y., Bandar, Z.A., Mclean, D.: An approach for measuring semantic similarity between words using multiple information sources. IEEE Trans. Knowl. Data Eng. 4, 871–882 (2003)Google Scholar
  34. 34.
    Ogren, P.V., Cohen, K.B., Acquaah-Mensah, G.K., Eberlein, J., Hunter, L.: The compositional structure of Gene Ontology terms. In: Pacific Symposium on Biocomputing, pp. 214–25 (2004)Google Scholar
  35. 35.
    Hamacher, H., Leberling, H., Zimmermann, H.-J.: Sensitivity analysis in fuzzy linear programming. Fuzzy Sets Syst. 1(4), 269–281 (1978)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Stoilos, G., Stamou, G., Kollias, S.: A string metric for ontology alignment. In: International Semantic Web Conference. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 624–637 (2005)CrossRefGoogle Scholar
  37. 37.
    Winkler, W.E.: The State of Record Linkage and Current Research Problems. In: Statistical Research Division US Census Bureau, pp. 1–15 (1999)Google Scholar
  38. 38.
    Yang, X.S.: Firefly algorithms for multimodal optimization. In International Symposium on Stochastic Algorithms. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 169–178 (2009)CrossRefGoogle Scholar
  39. 39.
    Palmer, M.: Verb semantics and lexical Zhibiao W u. In: Proceedings of the 32nd Annual Meeting of the Association for Computational Linguistics, Las Cruces, New Mexico, pp. 133–138 (1994)Google Scholar
  40. 40.
    Mohar, B.: Some applications of Laplace eigenvalues of graphs. In: Hahn, G., Sabidussi, G. (eds.) Graph Symmetry: Algebraic Methods and Applications, pp. 225–275. Springer, Dordrecht (1991)Google Scholar
  41. 41.
    Luxburg, U.V.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2006)MathSciNetCrossRefGoogle Scholar
  42. 42.
    Mohar, B.: The Laplacian spectrum of graphs. In: Proceedings of 6th Quadrennial International Conference on Theory and Applications of Graphs, pp. 871–898 (1988)Google Scholar
  43. 43.
    Hall, K.M.: An r-dimensional quadratic placement algorithm. Manag. Sci. 17(3), 219–229 (1970)CrossRefGoogle Scholar
  44. 44.
    Ding, C.H.Q., He, X., Zhab, H., Gu, M., Simon, H.D.: A min-max cut algorithm for graph partitioning and data clustering. In: IEEE Proceedings 2001 IEEE International Conference on Data Mining, pp. 107–114 (2001)Google Scholar
  45. 45.
    Alpert, C.J., Yao, S.-z.: Spectral partitioning: the more eigenvectors, the better. In: IEEE 32nd Design Automation Conference, pp. 195–200 (1995)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Makerere UniversityKampalaUganda

Personalised recommendations