Distributed and Parallel Databases

, Volume 36, Issue 1, pp 9–45 | Cite as

Crowd enabled curation and querying of large and noisy text mined protein interaction data

Part of the following topical collections:
  1. Special Issue on Large-Scale Data Curation and Metadata Management


The abundance of mined, predicted and uncertain biological data warrant massive, efficient and scalable curation efforts. The human expertise required for any successful curation enterprise is often economically prohibitive, especially for speculative end user queries that ultimately may not bear fruit. So the challenge remains in devising a low cost engine capable of delivering fast but tentative annotation and curation of a set of data items that can later be authoritatively validated by experts demanding significantly smaller investment. The aim thus is to make a large volume of predicted data available for use as early as possible with an acceptable degree of confidence in their accuracy while the curation continues. In this paper, we present a novel approach to annotation and curation of biological database contents using crowd computing. The technical contribution is in the identification and management of trust of mechanical turks, and support for ad hoc declarative queries, both of which are leveraged to enable reliable analytics using noisy predicted interactions. While the proposed approach and the CrowdCure system are designed for literature mined protein-protein interaction data curation, they are amenable to substantial generalization.


Crowdsourcing Declarative queries Data curation Uncertainty management Trust revision Crowd performance 



The current prototype of CrowdCure has been implemented by Xin Mou and the authors gratefully acknowledge his contributions, and many of the investigations into tool choices he helped them with.


  1. 1.
    Abekawa, T., Aizawa, A.: Sidenoter: scholarly paper browsing system based on PDF restructuring and text annotation. In: COLING (Demos), pp. 136–140. ACL (2016)Google Scholar
  2. 2.
    Alagar, V.S., Sadri, F., Said, J.N.: An extended relational model for managing uncertain information. In: DEXA, Workshop, pp. 257–266 (1995)Google Scholar
  3. 3.
    Alagar, V.S., Sadri, F., Said, J.N.: Semantics of an extended relational model for managing uncertain information. In: CIKM, pp. 234–240 (1995)Google Scholar
  4. 4.
    Alex, B., Grover, C., Haddow, B., Kabadjor, M., Klein, E., Matthews, M., Roebuck, S., Tobin, R., Wang, X.: Assisted curation: does text mining really help? In: Biocomputing 2008, Proceedings of the Pacific Symposium, Kohala Coast, Hawaii, USA, 4–8 January 2008, pp. 556–567 (2008)Google Scholar
  5. 5.
    Alonso, O., Marshall, C.C., Najork, M.A.: A human-centered framework for ensuring reliability on crowdsourced labeling tasks. In: Human Computation and Crowdsourcing: Works in Progress and Demonstration Abstracts, An Adjunct to the Proceedings of the First AAAI Conference on Human Computation and Crowdsourcing, 7–9 November, Palm Springs, CA, USA (2013)Google Scholar
  6. 6.
    Antony, A., Basetty, S., Hartanto, S., Palakal, M.J.: Computational approach to biological validation of protein–protein interactions discovered using literature mining. In: ACM SAC, Fortaleza, Ceara, Brazil, 16–20 March, pp. 1302–1306 (2008)Google Scholar
  7. 7.
    Askalidis, G., Stoddard, G.: A theoretical analysis of crowdsourced content curation. In: Workshop on Social Computing and User Generated Content (2013)Google Scholar
  8. 8.
    Attrill, H., Falls, K., Goodman, J.L., Millburn, G.H., Antonazzo, G., Rey, A.J., Marygold, S.J., the FlyBase consortium: FlyBase: establishing a gene group resource for drosophila melanogaster. Nucleic Acids Res. 44(D1), D786–D792 (2016)Google Scholar
  9. 9.
    Bhaskar, P., Buzzi, M., Geraci, F., Pellegrini, M.: From literature to knowledge: exploiting PubMed to answer biomedical questions in natural language. In: ITBAM, Spain, 3–4 September, pp. 3–15 (2015)Google Scholar
  10. 10.
  11. 11.
    Bozzon, A., Brambilla, M., Ceri, S., Silvestri, M., Vesci, G.: Choosing the right crowd: expert finding in social networks. In: Joint EDBT/ICDT Conferences, Genoa, Italy, 18–22 March, pp. 637–648 (2013)Google Scholar
  12. 12.
    Breitkreutz, B.-J., Stark, C., Reguly, T., Boucher, L., Breitkreutz, A., Livstone, M., Oughtred, R., Lackner, D.H., Bähler, J., Wood, V., Dolinski, K., Tyers, M.: The BioGRID interaction database: 2008 update. NAR 36, D637–D640 (2008)CrossRefGoogle Scholar
  13. 13.
    Budescu, D.V., Chen, E.: Identifying expertise to extract the wisdom of crowds. Manag. Sci. 61(2), 267–280 (2015)CrossRefGoogle Scholar
  14. 14.
    Burger, J.D., Doughty, E., Khare, R., Wei, C., Mishra, R., Aberdeen, J.S., Tresner-Kirsch, D., Wellner, B., Kann, M.G., Lu, Z., Hirschman, L.: Hybrid curation of gene-mutation relations combining automated extraction and crowdsourcing. Database (2014). doi: 10.1093/database/bau094
  15. 15.
    Cao, D., Xiao, N., Xu, Q., Chen, A.F.: Rcpi: R/bioconductor package to generate various descriptors of proteins, compounds and their interactions. Bioinformatics 31(2), 279–281 (2015)CrossRefGoogle Scholar
  16. 16.
    Chen, H., Sharp, B.M.: Content-rich biological network constructed by mining PubMed abstracts. BMC Bioinform. 5(1), 1–13 (2004)CrossRefGoogle Scholar
  17. 17.
    Cooper, S., Khatib, F., Makedon, I., Lü, H., Barbero, J., Baker, D., Fogarty, J., Popovic, Z., Players, F.: Analysis of social gameplay macros in the FoldIt cookbook. In: Foundations of Digital Games, FDG’11, Bordeaux, France, June 28–July 1, pp. 9–14 (2011)Google Scholar
  18. 18.
    Crescenzi, V., Merialdo, P., Qiu, D.: Crowdsourcing large scale wrapper inference. Distrib. Parallel Databases 33(1), 95–122 (2015)CrossRefGoogle Scholar
  19. 19.
    Cusick, M.E., Yu, H., Smolyar, A., Venkatesan, K., Carvunis, A.-R., Simonis, N., Rual, J.-F., Borick, H., Braun, P., Dreze, M., Vandenhaute, J., Galli, M., Yazaki, J., Hill, D.E., Ecker, J.R., Roth, F.P., Vidal, M.: Literature-curated protein interaction datasets. Nat. Methods 6(1), 39–46 (2009)CrossRefGoogle Scholar
  20. 20.
    Dalvi, N.N., Suciu, D.: Efficient query evaluation on probabilistic databases. In: VLDB, Toronto, Canada, August 31–September 3, pp. 864–875 (2004)Google Scholar
  21. 21.
    Dalvi, N.N., Suciu, D.: Management of probabilistic data: foundations and challenges. In: PODS, pp. 1–12 (2007)Google Scholar
  22. 22.
    Davis, A.P., Wiegers, T.C., Roberts, P.M., King, B.L., Lay, J.M., Lennon-Hopkins, K., Sciaky, D., Johnson, R.J., Keating, H., Greene, N., Hernandez, R., McConnell, K.J., Enayetallah, A., Mattingly, C.J.: A CTD-Pfizer collaboration: manual curation of 88,000 scientific articles text mined for drug-disease and drug-phenotype interactions. Database (2013). doi: 10.1093/database/bat080
  23. 23.
    Difallah, D.E., Demartini, G., Cudré-Mauroux, P.: Pick-a-Crowd: tell me what you like, and i’ll tell you what to do. In: Proceedings of the 22nd International World Wide Web Conference, WWW ’13, Rio de Janeiro. Brazil, vol. 13–17, pp. 367–374 (2013)Google Scholar
  24. 24.
    EverMap: Accessed 24 June 2017
  25. 25.
    Fabregat, A., Sidiropoulos, K., Garapati, P., Gillespie, M., Hausmann, K., Haw, R., Jassal, B., Jupe, S., Korninger, F., McKay, S., Matthews, L., May, B., Milacic, M., Rothfels, K., Shamovsky, V., Webber, M., Weiser, J., Williams, M., Wu, G., Stein, L., Hermjakob, H., D’Eustachio, P.: The reactome pathway knowledgebase. Nucleic Acids Res. 44(D1), D481–D487 (2016)CrossRefGoogle Scholar
  26. 26.
    Fourches, D., Muratov, E.N., Tropsha, A.: Trust, but verify: on the importance of chemical structure curation in cheminformatics and QSAR modeling research. J. Chem. Inf. Model. 50(7), 1189–1204 (2010)CrossRefGoogle Scholar
  27. 27.
    Franklin, M.J., Kossmann, D., Kraska, T., Ramesh, S., Xin, R.: CrowdDB: answering queries with crowdsourcing. In: ACM SIGMOD, Athens, Greece, 12–16 June, pp. 61–72 (2011)Google Scholar
  28. 28.
    Galland, A., Abiteboul, S., Marian, A., Senellart, P.: Corroborating information from disagreeing views. In: WSDM, New York, 4–6 February, pp. 131–140 (2010)Google Scholar
  29. 29.
    Gama-Castro, S., Rinaldi, F., López-Fuentes, A., Balderas-Martínez, Y.I., Clematide, S., Ellendorff, T.R., Santos-Zavaleta, A., Marques-Madeira, H., Collado-Vides, J.: Assisted curation of regulatory interactions and growth conditions of OxyR in E. coli K-12. Database (2014). doi:  10.1093/database/bau049
  30. 30.
    Goodspeed, R., Spanring, C., Reardon, T.: Crowdsourcing as data sharing: a regional web-based real estate development database. In: ICEGOV, NY, USA, 22–25 October, pp. 460–463 (2012)Google Scholar
  31. 31.
    Hirschman, L., Fort, K., Boué, S., Kyrpides, N., Dogan, R.I., Cohen, K.B.: Crowdsourcing and curation: perspectives from biology and natural language processing. Database (2016). doi: 10.1093/database/baw115
  32. 32.
    Jacquin, T., Fambon, O., Chidlovskii, B.: A web-based document harmonization and annotation chain: from PDF to RDF. In: ACM Symposium on Document Engineering, pp. 225–226. ACM (2005)Google Scholar
  33. 33.
    Jamieson, D.G., Roberts, P.M., Robertson, D.L., Sidders, B., Nenadic, G.: Cataloging the biomedical world of pain through semi-automated curation of molecular interactions. Database (2013). doi: 10.1093/database/bat033
  34. 34.
    Jamil, H.M., Sadri, F.: Recognizing credible experts in inaccurate databases. In: Proceedings of the 8th International Symposium on Methodologies for Intelligent Systems, ISMIS ’94, Charlotte, North Carolina, USA, 16–19 October, pp. 46–55 (1994)Google Scholar
  35. 35.
    Joseph, T., Saipradeep, V.G., Kotte, S., Rao, A., Srinivasan, R.: Plugin for concept-assisted search and navigation on PubMed. In: IEEE BIBM, Washington, DC, USA, 9–12 November, pp. 1712–1714 (2015)Google Scholar
  36. 36.
    Kalathur, R.K.R., Pinto, J.P., Hernández-Prieto, M.A., Machado, R.S.R., Almeida, D., Chaurasia, G., Futschik, M.E.: UniHI 7: an enhanced database for retrieval and interactive analysis of human molecular interaction networks. Nucleic Acids Res. 42(Database–Issue), 408–414 (2014)CrossRefGoogle Scholar
  37. 37.
    Kamar, E., Kapoor, A., Horvitz, E.: Identifying and accounting for task-dependent bias in crowdsourcing. In: AAAI HCOMP, 8–11 November, San Diego, CA, pp. 92–101 (2015)Google Scholar
  38. 38.
    Kanehisa, M., Araki, M., Goto, S., Hattori, M., Hirakawa, M., Itoh, M., Katayama, T., Kawashima, S., Okuda, S., Tokimatsu, T., Yamanishi, Y.: KEGG for linking genomes to life and the environment. NAR 36(Database–Issue), 480–484 (2008)Google Scholar
  39. 39.
    Karp, P.D.: Crowd-sourcing and author submission as alternatives to professional curation. Database (2016). doi: 10.1093/database/baw149
  40. 40.
    Kazemi, L., Shahabi, C., Chen, L.: GeoTruCrowd: trustworthy query answering with spatial crowdsourcing. In: SIGSPATIAL, Orlando, FL, 5–8 November, pp. 304–313 (2013)Google Scholar
  41. 41.
    Keseler, I.M., Skrzypek, M., Weerasinghe, D., Chen, A.Y., Fulcher, C., Li, G.-W., Lemmer, K.C., Mladinich, K.M., Chow, E.D, Sherlock, G., Karp, P.D.: Curation accuracy of model organism databases. Database (2014). doi: 10.1093/database/bau058
  42. 42.
    Khare, R., Burger, J.D., Aberdeen, J.S., Tresner-Kirsch, D., Corrales, T.J., Hirschman, L., Lu, Z.: Scaling drug indication curation through crowdsourcing. Database (2015). doi: 10.1093/database/bav016
  43. 43.
    Kifer, M., Li, A.: On the semantics of rule-based expert systems with uncertainty. In: ICDT, pp. 102–117 (1988)Google Scholar
  44. 44.
    Kim, S., Islamaj Dogan, R., Chatr-Aryamontri, A., Chang, C.S., Oughtred, R., Rust, J., Batista-Navarro, R., Carter, J., Ananiadou, S., Matos, S., Santos, A., Campos, D., Oliveira, J.L., Singh, O., Jonnagaddala, J., Dai, H.-J., Su, E.C.-Y., Chang, Y.-C., Su, Y.-C., Chu, C.-H., Chen, C.C., Hsu, W.-L., Peng, Y., Arighi, C., Wu, C.H., Vijay-Shanker, K., Aydin, F., Hsnbeyi, Z.M., zgr, A., Shin, S.-Y., Kwon, D., Dolinski, K., Tyers, M., Wilbur, W.J., Comeau, D.C.: BioCreative V BioC track overview: collaborative biocurator assistant task for BioGRID. Database (2016). doi: 10.1093/database/baw121
  45. 45.
    Kostakos, V.: Is the crowd’s wisdom biased? A quantitative analysis of three online communities. In: IEEE CSE, Vancouver, BC, Canada, 29–31 August, pp. 251–255 (2009)Google Scholar
  46. 46.
    Krallinger, M., Leitner, F., Rodriguez-Penagos, C., Valencia, A.: Overview of the protein–protein interaction annotation extraction task of BioCreative II. Genome Biol 9(Suppl 2), S4 (2008)CrossRefGoogle Scholar
  47. 47.
    Krallinger, M., Vazquez, M., Leitner, F., Salgado, D., Aryamontri, A.C., Winter, A., Perfetto, L., Briganti, L., Licata, L., Iannuccelli, M., Castagnoli, L., Cesareni, G., Tyers, M., Schneider, G., Rinaldi, F., Leaman, R., Gonzalez, G., Matos, S., Kim, S., Wilbur, W., Rocha, L., Shatkay, H., Tendulkar, A., Agarwal, S., Liu, F., Wang, X., Rak, R., Noto, K., Elkan, C., Lu, Z.: The protein–protein interaction tasks of BioCreative III: classification/ranking of articles and linking bio-ontology concepts to full text. BMC Bioinform. 12(Suppl 8), S3 (2011)CrossRefGoogle Scholar
  48. 48.
    Kuperstein, I., Cohen, D.P.A., Pook, S., Viara, E., Calzone, L., Barillot, E., Zinovyev, A.: NaviCell: a web-based environment for navigation, curation and maintenance of large molecular interaction maps. BMC Syst. Biol. 7, 100 (2013)CrossRefGoogle Scholar
  49. 49.
    Kwon, D., Kim, S., Shin, S., Chatr-aryamontri, A., Wilbur, W.J.: Assisting manual literature curation for protein–protein interactions using BioQRator. Database (2014). doi: 10.1093/database/bau067
  50. 50.
    Lakshmanan, L.V.S., Shiri, N.: A parametric approach to deductive databases with uncertainty. IEEE Trans. Knowl. Data Eng. 13(4), 554–570 (2001)CrossRefGoogle Scholar
  51. 51.
    Li, F., Jagadish, H.V.: Understanding natural language queries over relational databases. SIGMOD Rec. 45(1), 6–13 (2016)CrossRefGoogle Scholar
  52. 52.
    Liu, W., Laulederkind, S.J.F., Hayman, G.T., Wang, S.-J., Nigam, R., Smith, J.R., De Pons, J., Dwinell, M.R., Shimoyama, M.: Ontomate: a text-mining tool aiding curation at the rat genome database. Database (2015). doi: 10.1093/database/bau129
  53. 53.
    Lofi, C., Maarry, K.E., Balke, W.: Skyline queries in crowd-enabled databases. In: Joint EDBT/ICDT Conferences, Genoa, Italy, 18–22 March, pp. 465–476 (2013)Google Scholar
  54. 54.
    Mallory, E.K., Zhang, C., Ré, C., Altman, R.B.: Large-scale extraction of gene interactions from full-text literature using deepdive. Bioinformatics 32(1), 106–113 (2016)Google Scholar
  55. 55.
    Marcus, A., Wu, E., Madden, S., Miller, R.C.: Crowdsourced databases: query processing with people. In: Biennial Innovative Data Systems Research Conference, Asilomar, CA, USA, 9–12 January, pp. 211–214 (2011)Google Scholar
  56. 56.
    Mazloom, A.R., Dannenfelser, R., Clark, N.R., Grigoryan, A.V., Linder, K.M., Cardozo, T.J., Bond, J.C., Boran, A.D.W., Iyengar, R., Malovannaya, A., Lanz, R.B., Ma’ayan, A.: Recovering protein–protein and domain-domain interactions from aggregation of ip-ms proteomics of coregulator complexes. PLOS Comput Biol, 7(12):1–10, 12 (2011)Google Scholar
  57. 57.
    McDowall, M.D., Scott, M.S., Barton, G.J.: PIPs: human protein–protein interaction prediction database. NAR 37(suppl 1), D651–D656 (2009)CrossRefGoogle Scholar
  58. 58.
    Mehla, J., Caufield, J.H., Uetz, P.: Mapping protein–protein interactions using yeast two-hybrid assays. Cold Spring Harb. Protoc. 5, 2015 (2015)Google Scholar
  59. 59.
    Moal, I.H., Jiménez-García, B., Fernández-Recio, J.: CCharPPI web server: computational characterization of protein–protein interactions from structure. Bioinformatics 31(1), 123–125 (2015)CrossRefGoogle Scholar
  60. 60.
    Mou, X., Jamil, H.M., Ma, X.: Visflow: A visual database integration and workflow querying system. In: Proceedings of the 33rd International Conference on Data Engineering, ICDE 2017, San Diego, CA, USA, 19–22 April, pp. 1421–1422 (2017)Google Scholar
  61. 61.
    Mou, X., Jamil, H.M., Rinker, R.: Visual orchestration and autonomous execution of distributed and heterogeneous computational biology pipelines. In: IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016, Shenzhen, China, 15–18 December, pp. 752–757 (2016)Google Scholar
  62. 62.
    Mou, X., Jamil, H.M., Rinker, R.: Implementing computational biology pipelines using visflow. In. J. Data Min. Bioinform. 17(2), 115–131 (2017)CrossRefGoogle Scholar
  63. 63.
    Murali, T., Pacifico, S., Yu, J., Guest, S., Roberts, G.G., Finley Jr., R.L.: DroID 2011: a comprehensive, integrated resource for protein, transcription factor, RNA and gene interactions for drosophila. Nucleic Acids Res. 39(suppl 1), D736–D743 (2011)CrossRefGoogle Scholar
  64. 64.
    Nakatsu, R.T., Iacovou, C.L.: An investigation of user interface features of crowdsourcing applications. In: HCI International, Crete, Greece, 22–27 June, pp. 410–418 (2014)Google Scholar
  65. 65.
    Park, H., Widom, J.: CrowdFill: collecting structured data from the crowd. In: ACM SIGMOD, Snowbird, UT, USA, 22–27 June, pp. 577–588 (2014)Google Scholar
  66. 66.
    PDF Annotator: Accessed 24 June 2017
  67. 67.
  68. 68.
    Peng, J., Liu, Q., Ihler, A., Berger, B.: Crowdsourcing for structured labeling with applications to protein folding. In: Proceedings of the Machine Learning Meets Crowdsourcing Workshop, ICML (2013)Google Scholar
  69. 69.
    Peng, W., Wang, J., Cai, J., Chen, L., Li, M., Wu, F.-X.: Improving protein function prediction using domain and protein complexes in ppi networks. BMC Syst. Biol. 8(1), 1–13 (2014)CrossRefGoogle Scholar
  70. 70.
    Perkel, J.M.: Annotating the scholarly web. Nature 528(7580), 153–154 (2015)CrossRefGoogle Scholar
  71. 71.
    Pochampally, R., Sarma, A.D., Dong, X.L., Meliou, A., Srivastava, D.: Fusing data with correlations. In: SIGMOD, Snowbird, UT, USA, 22–27 June, pp. 433–444 (2014)Google Scholar
  72. 72.
    Powley, B., Dale, R., Anisimoff, I.: Enriching a document collection by integrating information extraction and PDF annotation. In: DRR, SPIE Proceedings, vol. 7247, p. 724707. SPIE (2009)Google Scholar
  73. 73.
    Rahmanian, B., Davis, J.G.: User interface design for crowdsourcing systems. In: AVI, Como, Italy, 27–29 May, pp. 405–408 (2014)Google Scholar
  74. 74.
    Raja, K., Subramani, S., Natarajan, J.: PPInterFinder—a mining tool for extracting causal relations on human proteins from literature. Database (2013). doi: 10.1093/database/bas052
  75. 75.
    Ramanath, R., Choudhury, M., Bali, K., Roy, R.S.: Crowd prefers the middle path: a new IAA metric for crowdsourcing reveals turker biases in query segmentation. In: ACL, 4-9 August, Sofia, Bulgaria, Volume 1: Long Papers, pp. 1713–1722 (2013)Google Scholar
  76. 76.
    Roberts, R.J., Varmus, H.E., Ashburner, M., Brown, P.O., Eisen, M.B., Khosla, C., Kirschner, M., Nusse, R., Scott, M., Wold, B.: Building a “GenBank” of the published literature. Science 291(5512), 2318–2319 (2001)CrossRefGoogle Scholar
  77. 77.
    Rodriguez-Esteban, R.: Biocuration with insufficient resources and fixed timelines. In: Biocuration, Geneva, Switzerland, 10–14 April, Oral presentation (2016)Google Scholar
  78. 78.
    Rogstadius, J., Vukovic, M., Teixeira, C.A., Kostakos, V., Karapanos, E., Laredo, J.: CrisisTracker: Crowdsourced social media curation for disaster awareness. IBM J. Res. Dev. 57(5), 1–4 (2013)CrossRefGoogle Scholar
  79. 79.
    Sadri, F.: Modeling uncertainty in databases. In: ICDE, pp. 122–131 (1991)Google Scholar
  80. 80.
    Sadri, F.: On the foundations of probabilistic information integration. In: CIKM, Maui, HI, USA, October 29–November 2, pp. 882–891 (2012)Google Scholar
  81. 81.
    Sadri, F.: Reliability of answers to queries in relational databases. IEEE Trans. Knowl. Data Eng. 3(2), 245–251 (1991)CrossRefGoogle Scholar
  82. 82.
    Sadri, F.: Aggregate operations in the information source tracking method. Theor. Comput. Sci. 133(2), 421–442 (1994)MathSciNetCrossRefMATHGoogle Scholar
  83. 83.
    Sadri, F.: Information source tracking method: efficiency issues. IEEE Trans. Knowl. Data Eng. 7(6), 947–954 (1995)CrossRefGoogle Scholar
  84. 84.
    Sadri, F.: Integrity constraints in the information source tracking method. IEEE Trans. Knowl. Data Eng. 7(1), 106–119 (1995)CrossRefGoogle Scholar
  85. 85.
    Sarjant, S., Legg, C., Stannett, M., Willcock, D.: Crowd-sourcing ontology content and curation: the massive ontology interface. In: FOIS, Rio de Janeiro, Brazil, 22–25 September, pp. 251–260 (2014)Google Scholar
  86. 86.
    Sevimoglu, T., Arga, K.Y.: The role of protein interaction networks in systems biomedicine. Comput. Struct. Biotechnol. J. 11(18), 22–27 (2014)CrossRefGoogle Scholar
  87. 87.
    Shakarian, P., Parker, A., Simari, G.I., Subrahmanian, V.S.: Annotated probabilistic temporal logic. ACM Trans. Comput. Log. 12(2), 14 (2011)MathSciNetCrossRefMATHGoogle Scholar
  88. 88.
    Subramani, S., Kalpana, R., Monickaraj, P.M., Natarajan, J.: HPIminer: a text mining system for building and visualizing human protein interaction networks and pathways. J. Biomed. Inform. 54, 121–131 (2015)CrossRefGoogle Scholar
  89. 89.
    Suter, B., Zhang, X., Pesce, C.G., Mendelsohn, A.R., Dinesh-Kumar, S.P., Mao, J.-H.H.: Next-generation sequencing for binary protein–protein interactions. Front. Genet. 6, 346 (2015)CrossRefGoogle Scholar
  90. 90.
    Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth, A., Santos, A., Tsafou, K.P., Kuhn, M., Bork, P., Jensen, L.J., von Mering, C.: STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 43(D1), D447–D452 (2015)CrossRefGoogle Scholar
  91. 91.
    Takis, J., Islam, A.Q.M.S., Lange, C., Auer, S.: Crowdsourced semantic annotation of scientific publications and tabular data in PDF. In: SEMANTICS, pp. 1–8. ACM (2015)Google Scholar
  92. 92.
    Tastan, O., Qi, Y., Carbonell, J.G., Klein-Seetharaman, J.: Refiing Literature Curated Protein Interactions Using Expert Opinions, pp. 318–329. World Scientific, Singapore (2014)Google Scholar
  93. 93.
    Thomas, P., Starlinger, J., Vowinkel, A., Arzt, S., Leser, U.: GeneView: a comprehensive semantic search engine for PubMed. Nucleic Acids Res. 40(W1), W585–W591 (2012)CrossRefGoogle Scholar
  94. 94.
    Turinsky, A.L., Razick, S., Turner, B., Donaldson, I.M., Wodak, S.J.: Literature curation of protein interactions: measuring agreement across major public databases. Database (2010). doi: 10.1093/database/baq026
  95. 95.
    U. of Washington: FoldIt: Solve Puzzles for Science. Accessed 14 September 2016
  96. 96.
    U. of Washington: Play FoldIt: Games for Change. Accessed 14 September 2016
  97. 97.
    Vasilescu, J., Figeys, D.: Mapping protein–protein interactions by mass spectrometry. Curr. Opin. Biotechnol. 17(4), 394–399 (2006)CrossRefGoogle Scholar
  98. 98.
    Wang, H., Ganapathiraju, M.K.: Evaluation of protein–protein interaction predictors with noisy partially labeled data sets. CoRR, abs/1509.05742 (2015)Google Scholar
  99. 99.
    Wang, P.: The Scientist in Us All: How crowdsourcing in science is changing the world. (2016). Accessed 6 September 2016
  100. 100.
    Wang, Z., Clark, N.R., Ma’ayan, A.: Dynamics of the discovery process of protein–protein interactions from low content studies. BMC Syst. Biol. 9, 26 (2015)CrossRefGoogle Scholar
  101. 101.
    Xie, S., Hu, Q., Zhang, J., Gao, J., Fan, W., Yu, P.S.: Robust crowd bias correction via dual knowledge transfer from multiple overlapping sources. In IEEE International Conference on Big Data, CA, USA, October 29–November 1, pp. 815–820 (2015)Google Scholar
  102. 102.
    Zadeh, L.A.: Knowledge representation in fuzzy logic. IEEE Trans. Knowl. Data Eng. 1(1), 89–100 (1989)CrossRefGoogle Scholar
  103. 103.
    Zhang, Y., Lin, H., Yang, Z., Wang, J.: Integrating experimental and literature protein–protein interaction data for protein complex prediction. BMC Genom. 16(S–2), S4 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of IdahoMoscowUSA
  2. 2.Department of Computer ScienceUniversity of North Carolina at GreensboroGreensboroUSA

Personalised recommendations