Skip to main content
Log in

A statistically-based ontology matching tool

  • Published:
Distributed and Parallel Databases Aims and scope Submit manuscript

Abstract

Ontologies have become a popular means of knowledge sharing and reuse. This has motivated development of large independent ontologies within the same or different domains with some overlapping information among them. In order to match such large ontologies, automatic matchers become an inevitable solution. This work explores the use of a predictive statistical model to establish an alignment between two input ontologies. We demonstrate how to integrate ontology partitioning and parallelism in the ontology matching process in order to make the statistical predictive model scalable to large ontology matching tasks. Unlike most ontology matching tools which establish 1:1 cardinality mappings, our statistical model generates one-to-many cardinality mappings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. http://disease-ontology.org/.

  2. https://www.nlm.nih.gov/mesh/.

  3. https://www.nlm.nih.gov/research/umls/sourcereleasedocs/index.html.

  4. http://www.lirmm.fr/yam-plus-plus/Yam++2012.zip.

  5. https://github.com/AgreementMakerLight/AML-Jar.

  6. https://github.com/ernestojimenezruiz/logmap-matcher.

References

  1. Stoilos, G., Stamou, G., Kollias, S.: A string metric for ontology alignment. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 624–637 (2005)

  2. Euzenat, J., Shvaiko, P.: Ontology Matching, 2nd edn. Springer, Heidelberg (DE) (2013)

    Book  MATH  Google Scholar 

  3. Shvaiko, P., Euzenat, J.: Ontology matching: state of the art and future challenges. IEEE Trans. Knowl. Data Eng. 25, 158–176 (2013)

    Article  Google Scholar 

  4. Otero-Cerdeira, L., Rodríguez-Martínez, F.J., Gómez-Rodríguez, A.: Ontology matching: a literature review. Expert Syst. Appl. 42, 949–971 (2015)

    Article  Google Scholar 

  5. Ngo, D.H., Bellahsene, Z.: Overview of YAM++(not) yet another matcher for ontology alignment task. J. Web Semant. 41, 30–49 (2016)

    Article  Google Scholar 

  6. Jiménez-Ruiz, E., Cuenca Grau, B., Solimando, A., Cross, V.: LogMap family results for OAEI 2015. In: CEUR Workshop Proceedings, pp. 171–175 (2015)

  7. Faria, D., Pesquita, C., Santos, E., Palmonari, M., Cruz, I.F., Couto, F.M.: The AgreementMakerLight Ontology Matching System, pp. 527–541. Springer, Berlin (2013)

    Google Scholar 

  8. Djeddi, W.E., Khadir, M.T.: XMap++: results for OAEI 2014. In: CEUR Workshop Proceedings, pp. 163–169 (2014)

  9. Barney, B.: Introduction to Parallel Computing. https://computing.llnl.gov/tutorials/parallel_comp/ (2016)

  10. Fahad, M.: Initial results for Ontology Matching workshop 2015 DKP-AOM : results for OAEI 2015. In: CEUR Workshop Proceedings (2015)

  11. Mariem El Abdi, M.K., Souid, H., Yahia, S.B.: CLONA results for OAEI 2015. The Tenth International Workshop on Ontology Matching—Ontology Alignment Evaluation Initiative (2015)

  12. Damak, S., Souid, H., Kachroudi, M., Zghal, S.: EXONA results for OAEI 2015. The Tenth International Workshop on Ontology Matching—Ontology Alignment Evaluation Initiative, p. 5 (2015)

  13. Jim, E.: OAEI 2014—LogMap family results for OAEI 2014. In: CEUR Workshop Proceedings, pp. 3–7 (2014)

  14. Ngo, D., Bellahsene, Z.: YAM++: results for OAEI 2013. In: CEUR Workshop Proceedings, vol. 1111, pp. 211–218 (2013)

  15. Ichise, R.: Machine learning approach for ontology mapping using multiple concept similarity measures. In: Seventh IEEE/ACIS International Conference on Computer and Information Science (icis 2008), pp. 340–346 (2008)

  16. Rong, S., Niu, X., Xiang, E.W., Wang, H., Yang, Q.: A machine learning approach for instance matching based on similarity metrics. In: The 11th International Semantic Web Conference (ISWC’12), pp. 1–16 (2012)

  17. Spohr, D., Hollink, L., Cimiano, P.: A machine learning approach to multilingual and cross-lingual ontology matching. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (PART 1), pp. 665–680 (2011)

  18. To, H., Ichise, R., Le, H.: An adaptive machine learning framework with user interaction for ontology matching. In: Twenty-First International Joint Conference on Artificial Intelligence (2009)

  19. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Ontology matching: a machine learning approach. In: Handbook on Ontologies in Information Systems, pp. 385–516 (2003)

  20. Ngo, D., Bellahsene, Z.: YAM++: a multi-strategy based approach for ontology matching task. in: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 421–425 (2012)

  21. Rosse, C., Mejino, J.L.V.: A reference ontology for biomedical informatics: the foundational model of anatomy. J. Biomed. Inform. 36(6), 478–500 (2003)

    Article  Google Scholar 

  22. Golbeck, J., Fragoso, G., Hartel, F., Hendler, J., Oberthaler, J., Parsia, B.: The National Cancer Institute’s Thésaurus and Ontology. Science, Services and Agents on the World Wide Web, Web Semantics (2001)

  23. Slava, M.K.: Probabilities from sparse data for the language model component of a speech recognizer. IEEE Trans. Acoust. Speech Signal Process. ASSP–35, 400–401 (1987)

    Google Scholar 

  24. Jiménez-Ruiz, E., Grau, B.C., Zhou, Y.: LogMap 2.0: towards logic-based, scalable and interactive ontology matching. In: SWAT4LS, pp. 45–46 (2011)

  25. Tenschert, A., Assel, M., Cheptsov, A., Gallizo, G., Valle, E.D., Celino, I.: Parallelization and distribution techniques for ontology matching in urban computing environments. In: CEUR Workshop Proceedings, pp. 248–249 (2009)

  26. Chan, P.K., Schlag, M.D., Zien, J.Y.: Spectral K-way ratio-cut partitioning and clustering. IEEE Trans. Comput.-Aided Des. Integr. Circuit Syst. 13, 1088–1096 (1994)

    Article  Google Scholar 

  27. Spielman, D.A., Teng, S.H.: Spectral partitioning works: planar graphs and finite element meshes. Linear Algebra Appl. 421, 284–305 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hagen, L., Member, S., Kahng, A.B.: New spectral methods for ratio cut partitioning and clustering. IEEE Trans. Comput. Aided 11(9), 1074–1085 (1992)

    Article  Google Scholar 

  29. Malik, J., Belongie, S., Leung, T.K., Shi, J.: Contour and texture analysis for image segmentation. Int. J. Comput. Vis. 43, 7–27 (2001)

    Article  MATH  Google Scholar 

  30. Luxburg, U.V.: A tutorial on spectral clustering a tutorial on spectral clustering. Stat. Comput. 17, 395–416 (2006)

    Article  Google Scholar 

  31. Mohar, B.: The Laplacian spectrum of graphs. In: Proceedings of the 6th Quadrennial International Conference on Theory and Applications of Graphs, pp. 871–898 (1988)

  32. Hu, W., Zhao, Y., Qu, Y.: Partition-based block matching of large class hierarchies. In: 1st Asian Semantic Web Conference (ASWC 2006), pp. 72–83 (2006)

  33. Rahm, E.: Towards large-scale schema and ontology matching. In: Schema Matching and Mapping, pp. 3–27 (2011)

  34. Steorts, R., Ventura, S., Sadinle, M., Fienberg, S.: A comparison of blocking methods for record linkage. In: International Conference on Privacy in Statistical Databases, pp. 253–268 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Ochieng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochieng, P., Kyanda, S. A statistically-based ontology matching tool. Distrib Parallel Databases 36, 195–217 (2018). https://doi.org/10.1007/s10619-017-7206-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10619-017-7206-0

Keywords

Navigation