Distributed and Parallel Databases

, Volume 34, Issue 4, pp 463–503

CloudMdsQL: querying heterogeneous cloud data stores with a common language

  • Boyan Kolev
  • Patrick Valduriez
  • Carlyna Bondiombouy
  • Ricardo Jiménez-Peris
  • Raquel Pau
  • José Pereira
Article

Abstract

The blooming of different cloud data management infrastructures, specialized for different kinds of data and tasks, has led to a wide diversification of DBMS interfaces and the loss of a common programming paradigm. In this paper, we present the design of a cloud multidatastore query language (CloudMdsQL), and its query engine. CloudMdsQL is a functional SQL-like language, capable of querying multiple heterogeneous data stores (relational and NoSQL) within a single query that may contain embedded invocations to each data store’s native query interface. The query engine has a fully distributed architecture, which provides important opportunities for optimization. The major innovation is that a CloudMdsQL query can exploit the full power of local data stores, by simply allowing some local data store native queries (e.g. a breadth-first search query against a graph database) to be called as functions, and at the same time be optimized, e.g. by pushing down select predicates, using bind join, performing join ordering, or planning intermediate data shipping. Our experimental validation, with three data stores (graph, document and relational) and representative queries, shows that CloudMdsQL satisfies the five important requirements for a cloud multidatastore query language.

Keywords

Cloud Heterogeneous databases SQL and NoSQL integration Multistore query language 

References

  1. 1.
    Armbrust, M., Xin, R., Lian, C., Huai, Y., Liu, D., Bradley, J., Meng, X., Kaftan, T., Franklin, M., Ghodsi, A., Zaharia, M.: Spark SQL: Relational Data Processing in Spark. ACM SIGMOD Int. Conf. on Management of Data, pp. 1383-1394 (2015)Google Scholar
  2. 2.
    Binnig, C., Rehrmann, R., Faerber, F., Riewe, R.: FunSQL: It is time to make SQL functional. Int. Conf. on Extending Database Technology / Database Theory (EDBT/ICDT), pp. 41-46 (2012)Google Scholar
  3. 3.
    Bondiombouy, C., Kolev, B., Levchenko, O., Valduriez, P. : Integrating Big Data and Relational Data with a Functional SQL-like Query Language. Int. Conf. on Databases and Expert Systems Applications (DEXA), pp. 170-185 (2015)Google Scholar
  4. 4.
    Bugiotti, F., Bursztyn, D., Deutsch, A., Ileana, I., Manolescu, I.: Invisible Glue: Scalable Self-Tuning Multi-Stores. Conf. on Innovative Data Systems Research (CIDR), 7pp (2015)Google Scholar
  5. 5.
    CoherentPaaS Project, http://coherentpaas.eu. [Last accessed on August 18, 2015]
  6. 6.
    Danforth, S., Valduriez, P.: A FAD for Data-Intensive Applications. IEEE Trans. on Knowledge and Data Engineering 4(1), 34–51 (1992)CrossRefMATHGoogle Scholar
  7. 7.
    Doan, A., Halevy, A., Ives, Z.: Principles of Data Integration. Morgan Kaufmann, (2012)Google Scholar
  8. 8.
    Godfrey, P., Gryz, J., Hoppe, A., Ma, W., Zuzarte, C.: Query rewrites with views for XML in DB2. IEEE Int. Conf. on Data Engineering, pp. 1339–1350 (2009)Google Scholar
  9. 9.
    Gulisano, V., Jiménez-Peris, R., Patiño-Martinez, M., Valduriez, P.: StreamCloud: A Large Scale Data Streaming System. IEEE Int. Conf. on Distributed Computing Systems (ICDCS), pp. 126-137 (2010)Google Scholar
  10. 10.
    Gulisano, V., Jiménez-Peris, R., Patiño-Martinez, M., Soriente, C., Valduriez, P.: StreamCloud: An Elastic and Scalable Data Streaming System. IEEE Trans. On Parallel and Distributed Systems 23(12), 2351–2365 (2012)CrossRefGoogle Scholar
  11. 11.
    Haas, L. M., Kossmann, D., Wimmers, E. L., Yang, J.: Optimizing Queries across Diverse Data Sources. Int. Conf. on Very Large Databases (VLDB), pp. 276-285 (1997)Google Scholar
  12. 12.
    Haase, P., Mathäß, T., Ziller, M.: An Evaluation of Approaches to Federated Query Processing over Linked Data. Int. Conf. on Semantic Systems (I-SEMANTICS) (2010)Google Scholar
  13. 13.
    Hacıgümüs, H., Sankaranarayanan, J., Tatemura, J., LeFevre, J., Polyzotis, N.: Odyssey: A Multi-Store System for Evolutionary Analytics. Proceedings of the VLDB Endowment (PVLDB) 6(11), 1180–1181 (2013)CrossRefGoogle Scholar
  14. 14.
    Hart, B., Valduriez, P., Danforth, S.: Parallelizing FAD using Compile Time Analysis Techniques. IEEE Data Engineering Bulletin (12) 1, 9–15 (1989)Google Scholar
  15. 15.
    JSON Schema and Hyper-Schema, http://json-schema.org. [Last accessed on August 18, 2015]
  16. 16.
    LeFevre, J., Sankaranarayanan, J., Hacıgümüs, H., Tatemura, J., Polyzotis, N., Carey, M.: MISO: Souping Up Big Data Query Processing with a Multistore System. ACM SIGMOD Int. Conf. on Management of Data, pp. 1591-1602 (2014)Google Scholar
  17. 17.
    Liu, Z.H., Chang, H.J., Sthanikam, B.: Efficient support of XQuery Update Facility in XML enabled RDBMS. IEEE Int. Conf. on Data Engineering, pp. 1394–1404 (2012)Google Scholar
  18. 18.
    Martínez-Bazan, N., Muntés-Mulero, V., Gómez-Villamor, S., Águila-Llorente, M.A., Domínguez-Sal, D., Larriba-Pey, J-L.: Efficient Graph Management Based on Bitmap Indices. Int. Database Engineering & Applications Symposium (IDEAS), pp. 110-119 (2012)Google Scholar
  19. 19.
    Meijer, E., Beckman, B., Bierman, G. M.: LINQ: Reconciling Object, Relations and XML in the .NET Framework. ACM SIGMOD Int. Conf. on Data Management, pp. 706-706 (2006)Google Scholar
  20. 20.
    NoSQL Databases, http://nosql-database.org. [Last accessed on August 18, 2015]
  21. 21.
    Özsu, T., Valduriez, P.: Principles of Distributed Database Systems – Third Edition. Springer, 850 pages (2011)Google Scholar
  22. 22.
    Tomasic, A., Raschid, L., Valduriez, P.: Scaling Access to Heterogeneous Data Sources with DISCO. IEEE Transactions on Knowledge and Data Engineering 10(5), 808–823 (1998)CrossRefGoogle Scholar
  23. 23.
    Valduriez, P., Danforth, S.: Functional SQL, an SQL Upward Compatible Database Programming Language. Information Sciences 62(3), 183–203 (1992)CrossRefMATHGoogle Scholar
  24. 24.
    Wyss, C.M., Robertson, E.L.: Relational Languages for Metadata Integration. ACM Trans. On Database Systems 30(2), 624–660 (2005)CrossRefGoogle Scholar
  25. 25.
    Yuanyuan, T., Zou, T., Özcan, F., Goncalves, R., Pirahesh, H.: Joins for Hybrid Warehouses: Exploiting Massive Parallelism and Enterprise Data Warehouses. Int. Conf. on Extending Database Technology / Database Theory (EDBT/ICDT), pp. 373-384 (2015)Google Scholar
  26. 26.
    Zhu, M., Risch, T.: Querying Combined Cloud-Based and Relational Databases, Int. Conf. on Cloud and Service Computing, pp. 330–335 (2011)Google Scholar
  27. 27.
    Zhu, Q., Larson, P.-A.: Global Query Processing and Optimization in the CORDS Multidatabase System, Int. Conf. on Parallel and Distributed Computing Systems, pp. 640–647 (1996)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Zenith team, InriaMontpellierFrance
  2. 2.Universidad Politecnica de Madrid (UPM) and LeanXcaleMadridSpain
  3. 3.Sparsity TechnologiesBarcelonaSpain
  4. 4.INESCBragaPortugal

Personalised recommendations