Distributed and Parallel Databases

, Volume 29, Issue 5–6, pp 333–360 | Cite as

A human-centric runtime framework for mixed service-oriented systems

Article

Abstract

A wide range of Web-based tools and socially-enhanced collaboration services have changed models of work. In today’s collaboration systems, interactions typically span a number of people and services to work on joint tasks or to solve emerging problems. Finding the right collaboration partner in Web-based interactions remains challenging due to scale and the temporary nature of collaborations. We argue that humans need different ways to indicate their availability and desire to join collaborations. In this work, we discuss collaboration scenarios where people define services based on their dynamically changing skills and expertise by using Human-Provided Services. This approach is motivated by the need to support novel service-oriented applications in emerging crowdsourcing environments. In such open and dynamic environments, user participation is often driven by intrinsic incentives and actors properties such as reputation. We present a framework enabling users to define personal services to cope with complex interactions. We focus on the discovery and provisioning of human expertise in service-oriented environments.

Keywords

Human provided services Mixed service-oriented systems Crowdsourcing Social computing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams, M., ter Hofstede, A.H.M., Edmond, D., Aalst, W.M.P.V.D.: Worklets: a service-oriented implementation of dynamic flexibility in workflows. In: OTM Conferences (1), pp. 291–308 (2006) Google Scholar
  2. 2.
    Agichtein, E., Castillo, C., Donato, D., Gionis, A., Mishne, G.: Finding high-quality content in social media. In: WSDM, pp. 183–194. ACM, New York (2008) CrossRefGoogle Scholar
  3. 3.
    Agrawal, A., et al.: WS-BPEL Extension for People (BPEL4People), V1.0 (2007) Google Scholar
  4. 4.
    Amend, M., et al.: Web Services Human Task (WS-HumanTask), Version 1.0 (2007) Google Scholar
  5. 5.
    Balthazard, P.A., Potter, R.E., Warren, J.: Expertise extraversion and group interaction styles as performance indicators in virtual teams: how do perceptions of it’s performance get formed? DATA BASE 35(1), 41–64 (2004) Google Scholar
  6. 6.
    Brabham, D.: Crowdsourcing as a model for problem solving: an introduction and cases. Convergence 14(1), 75 (2008) Google Scholar
  7. 7.
    Breslin, J., Passant, A., Decker, S.: Social web applications in enterprise. Soc. Semantic Web 48, 251–267 (2009) CrossRefGoogle Scholar
  8. 8.
    Cugola, G., Nitto, E.D., Fuggetta, A., Ghezzi, C.: A framework for formalizing inconsistencies and deviations in human-centered systems. ACM Trans. Softw. Eng. Methodol. 5(3), 191–230 (1996) CrossRefGoogle Scholar
  9. 9.
    Dom, B., Eiron, I., Cozzi, A., Zhang, Y.: Graph-based ranking algorithms for e-mail expertise analysis. In: DMKD, pp. 42–48. ACM, New York (2003) CrossRefGoogle Scholar
  10. 10.
    Dustdar, S.: Caramba a process-aware collaboration system supporting ad hoc and collaborative processes in virtual teams. Distrib. Parallel Databases 15(1), 45–66 (2004) MATHCrossRefGoogle Scholar
  11. 11.
    Easley, D., Kleinberg, J.: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, Cambridge (2010) MATHGoogle Scholar
  12. 12.
    Garlan, D., Poladian, V., Schmerl, B.R., Sousa, J.P.: Task-based self-adaptation. In: WOSS, pp. 54–57 (2004) CrossRefGoogle Scholar
  13. 13.
    Gentry, C., Ramzan, Z., Stubblebine, S.: Secure distributed human computation. In: EC’05, pp. 155–164. ACM, New York (2005) Google Scholar
  14. 14.
    Gyöngyi, Z., Molina, H.G., Pedersen, J.: Combating web spam with trustrank. In: VLDB, pp. 576–587. ACM, New York (2004) CrossRefGoogle Scholar
  15. 15.
    Haveliwala, T.H.: Topic-sensitive pagerank. In: WWW, pp. 517–526. ACM, New York (2002) Google Scholar
  16. 16.
    Jeh, G., Widom, J.: Scaling personalized web search. In: WWW, pp. 271–279. ACM, New York (2003) Google Scholar
  17. 17.
    Juszczyk, L., Dustdar, S.: Script-based generation of dynamic testbeds for soa. In: ICWS ’10. IEEE, New York (2010) Google Scholar
  18. 18.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5), 604–632 (1999) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Kosorukoff, A., Goldberg, D.E.: Genetic algorithms for social innovation and creativity. Tech. rep., University of Illinois at Urbana-Champaign (2001) Google Scholar
  20. 20.
    Kumar, A., Aalst, W.M.P.V.D., Verbeek, E.: Dynamic work distribution in workflow management systems: How to balance quality and performance. J. Manag. Inf. Syst. 18(3), 157–193 (2002) Google Scholar
  21. 21.
    Mendling, J., Ploesser, K., Strembeck, M.: Specifying separation of duty constraints in bpel4people processes. In: Business Information Systems. LNBIP, pp. 273–284. Springer, Berlin (2008) CrossRefGoogle Scholar
  22. 22.
    Moody, P., Gruen, D., Muller, M.J., Tang, J., Moran, T.P.: Business activity patterns: a new model for collaborative business applications. IBM Syst. J. 45(4), 683–694 (2006) CrossRefGoogle Scholar
  23. 23.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the Web. Tech. rep., Stanford Digital Library Technologies Project (1998) Google Scholar
  24. 24.
    Panteli, N., Davison, R.: The role of subgroups in the communication patterns of global virtual teams. IEEE Trans. Prof. Commun. 48(2), 191–200 (2005) CrossRefGoogle Scholar
  25. 25.
    Petrie, C.: Plenty of room outside the firm. Internet Comput. 14, 92–96 (2010) Google Scholar
  26. 26.
    Psaier, H., Juszczyk, L., Skopik, F., Schall, D., Dustdar, S.: Runtime behavior monitoring and self-adaptation in service-oriented systems. In: SASO. IEEE, New York (2010) Google Scholar
  27. 27.
    Russell, N., Aalst, W.M.P.V.D.: Evaluation of the bpel4people and ws-humantask extensions to ws-bpel 2.0 the workflow resource patterns. Tech. rep., BPM Center Brisbane/Eindhoven (2007) Google Scholar
  28. 28.
    Schall, D.: Human interactions in mixed systems—architecture, protocols, and algorithms. PhD thesis, Vienna University of Technology (2009) Google Scholar
  29. 29.
    Schall, D., Dustdar, S.: Dynamic context-sensitive pagerank for expertise mining. In: SocInfo. LNCS. Springer, Berlin (2010) Google Scholar
  30. 30.
    Schall, D., Skopik, F.: Mining and composition of emergent collectives in mixed service-oriented systems. In: CEC ’10. IEEE, New York (2010) Google Scholar
  31. 31.
    Schall, D., Truong, H.L., Dustdar, S.: The human-provided services framework. In: EEE ’08. IEEE, New York (2008) Google Scholar
  32. 32.
    Schall, D., Truong, H.L., Dustdar, S.: Unifying human and software services in Web-scale collaborations. IEEE Internet Comput. 12(3), 62–68 (2008) CrossRefGoogle Scholar
  33. 33.
    Schall, D., Dustdar, S., Blake, M.B.: Programming human and software-based web services. Computer 43, 82–85 (2010) CrossRefGoogle Scholar
  34. 34.
    Shahaf, D., Horvitz, E.: Generalized task markets for human and machine computation (2010) Google Scholar
  35. 35.
    Shetty, J., Adibi, J.: Discovering important nodes through graph entropy the case of enron email database. In: LinkKDD, pp. 74–81. ACM, New York (2005) CrossRefGoogle Scholar
  36. 36.
    Skopik, F., Schall, D., Dustdar, S.: Modeling and mining of dynamic trust in complex service-oriented systems. Inf. Syst. 35(7), 735–757 (2010) CrossRefGoogle Scholar
  37. 37.
    Skopik, F., Schall, D., Dustdar, S.: Trustworthy interaction balancing in mixed service-oriented systems. In: SAC ’10, pp. 799–806. ACM, New York (2010) Google Scholar
  38. 38.
    Su, Q., Pavlov, D., Chow, J.H., Baker, W.C.: Internet-scale collection of human-reviewed data. In: WWW ’07, pp. 231–240. ACM, New York (2007) CrossRefGoogle Scholar
  39. 39.
    Thomas, J., Paci, F., Bertino, E., Eugster, P.: User tasks and access control over Web services. In: ICWS’07, pp. 60–69. IEEE, New York (2007) Google Scholar
  40. 40.
    von Ahn, L.: Games with a purpose. IEEE Comput. 39(6), 92–94 (2006) Google Scholar
  41. 41.
    Vukovic, M.: Crowdsourcing for enterprises. In: IEEE Congress on Services, pp. 686–692. IEEE, New York (2009) CrossRefGoogle Scholar
  42. 42.
    Yang, J., Adamic, L., Ackerman, M.: Competing to share expertise: the taskcn knowledge sharing community. In: Int. Conf. on Weblogs and Social Media (2008) Google Scholar
  43. 43.
    Zhang, J., Ackerman, M.S., Adamic, L.: Expertise networks in online communities: structure and algorithms. In: WWW, pp. 221–230. ACM, New York (2007) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.ViennaAustria

Personalised recommendations