Advertisement

Data Mining and Knowledge Discovery

, Volume 31, Issue 5, pp 1266–1293 | Cite as

Flexible constrained sampling with guarantees for pattern mining

  • Vladimir Dzyuba
  • Matthijs van Leeuwen
  • Luc De Raedt
Article
Part of the following topical collections:
  1. Journal Track of ECML PKDD 2017

Abstract

Pattern sampling has been proposed as a potential solution to the infamous pattern explosion. Instead of enumerating all patterns that satisfy the constraints, individual patterns are sampled proportional to a given quality measure. Several sampling algorithms have been proposed, but each of them has its limitations when it comes to (1) flexibility in terms of quality measures and constraints that can be used, and/or (2) guarantees with respect to sampling accuracy. We therefore present Flexics, the first flexible pattern sampler that supports a broad class of quality measures and constraints, while providing strong guarantees regarding sampling accuracy. To achieve this, we leverage the perspective on pattern mining as a constraint satisfaction problem and build upon the latest advances in sampling solutions in SAT as well as existing pattern mining algorithms. Furthermore, the proposed algorithm is applicable to a variety of pattern languages, which allows us to introduce and tackle the novel task of sampling sets of patterns. We introduce and empirically evaluate two variants of Flexics: (1) a generic variant that addresses the well-known itemset sampling task and the novel pattern set sampling task as well as a wide range of expressive constraints within these tasks, and (2) a specialized variant that exploits existing frequent itemset techniques to achieve substantial speed-ups. Experiments show that Flexics is both accurate and efficient, making it a useful tool for pattern-based data exploration.

Keywords

Pattern sampling Itemset mining Pattern set mining Tiling Hashing-based sampling 

Notes

Acknowledgements

The authors would like to thank Guy Van den Broeck for useful discussions and Martin Albrecht for the support with the m4ri library. Vladimir Dzyuba is supported by FWO-Vlaanderen.

References

  1. Aggarwal CC, Han J (eds) (2014) Frequent pattern mining. Springer International Publishing, New YorkMATHGoogle Scholar
  2. Agrawal R, Mannila H, Srikant R, Toivonen H, Verkamo AI (1996) Fast discovery of association rules. In: Fayyad U, Piatetsky-Shapiro G, Smyth P, Uthurusamy R (eds) Advances in knowledge discovery and data mining. AAAI Press, Menlo Park, pp 307–328Google Scholar
  3. Albrecht M, Bard G (2012) The M4RI Library. The M4RI Team. https://bitbucket.org/malb/m4ri
  4. Berlingerio M, Pinelli F, Calabrese F (2013) ABACUS: frequent pattern mining-based community discovery in multidimensional networks. Data Min Knowl Discov 27(3):294–320MathSciNetCrossRefMATHGoogle Scholar
  5. Boley M, Grosskreutz H (2009) Approximating the number of frequent sets in dense data. Knowl Inf Syst 21(1):65–89CrossRefGoogle Scholar
  6. Boley M, Gärtner T, Grosskreutz H (2010) Formal concept sampling for counting and threshold-free local pattern mining. In: Proceedings of the 10th SIAM international conference on data mining (SDM ’10), pp 177–188Google Scholar
  7. Boley M, Lucchese C, Paurat D, Gärtner T (2011) Direct local pattern sampling by efficient two-step random procedures. In: Proceedings of the 17th ACM SIGKDD conference on knowledge discovery and data mining (KDD ’11), pp 582–590Google Scholar
  8. Boley M, Moens S, Gärtner T (2012) Linear space direct pattern sampling using coupling from the past. In: Proceedings of the 18th ACM SIGKDD conference on knowledge discovery and data mining (KDD ’12), pp 69–77Google Scholar
  9. Boley M, Mampaey M, Kang B, Tokmakov P, Wrobel S (2013) One click mining—interactive local pattern discovery through implicit preference and performance learning. In: Proceedings of the ACM SIGKDD workshop on interactive data exploration and analytics (IDEA ’13), pp 28–36Google Scholar
  10. Bonchi F, Giannotti F, Lucchese C, Orlando S, Perego R, Trasarti R (2009) A constraint-based querying system for exploratory pattern discovery. Inf Syst 34(1):3–27CrossRefGoogle Scholar
  11. Bouillaguet C, Delaplace C (2016) Sparse Gaussian elimination modulo \(p\): an update. In: Proceedings of the 18th international workshop on computer algebra in scientific computing (CASC ’16), pp 101–116Google Scholar
  12. Bringmann B, Nijssen S, Tatti N, Vreeken J, Zimmermann A (2010) Mining sets of patterns. In: Tutorial at the European conference on machine learning and principles and practice of knowledge discovery (ECML/PKDD ’10)Google Scholar
  13. Bucilă C, Gehrke J, Kifer D, White W (2003) Dualminer: a dual-pruning algorithm for itemsets with constraints. Data Min Knowl Discov 7(3):241–272MathSciNetCrossRefGoogle Scholar
  14. Calders T, Rigotti C, Boulicaut JF (2006) A survey on condensed representations for frequent sets. In: Boulicaut JF, De Raedt L, Mannila H (eds) Constraint-based mining and inductive databases. Springer, Berlin, pp 64–80CrossRefGoogle Scholar
  15. Carvalho DR, Freitas AA, Ebecken N (2005) Evaluating the correlation between objective rule interestingness measures and real human interest. In: Proceedings of the 9th European conference on principles of data mining and knowledge discovery (PKDD ’05), pp 453–461Google Scholar
  16. Chakraborty S, Meel KS, Vardi MY (2013) A scalable and nearly uniform generator of SAT witnesses. In: Proceedings of the 25th international conference on computer-aided verification (CAV ’13), pp 608–623Google Scholar
  17. Chakraborty S, Fremont DJ, Meel KS, Vardi MY (2014) Distribution-aware sampling and weighted model counting for SAT. In: Proceedings of the 28th AAAI conference on artificial intelligence (AAAI ’14), pp 1722–1730Google Scholar
  18. Chakraborty S, Fremont DJ, Meel KS, Seshia SA, Vardi MY (2015) On parallel scalable uniform SAT witness generation. In: Proceedings of the 21st international conference on tools and algorithms for the construction and analysis of systems (TACAS ’15), vol 9035, pp 304–319Google Scholar
  19. De Raedt L, Zimmermann A (2007) Constraint-based pattern set mining. In: Proceedings of the 7th SIAM international conference on data mining (SDM ’07), pp 237–248Google Scholar
  20. Dzyuba V, van Leeuwen M (2017) Learning what matters—sampling interesting patterns. In: Proceedings of the 21st Pacific-Asia conference on knowledge discovery and data mining (PAKDD ’17) (in press)Google Scholar
  21. Ermon S, Gomes CP, Sabharwal A, Selman B (2013a) Embed and project: discrete sampling with universal hashing. Adv Neural Inf Process Syst 26:2085–2093Google Scholar
  22. Ermon S, Gomes CP, Sabharwal A, Selman B (2013b) Taming the curse of dimensionality: discrete integration by hashing and optimization. In: Proceedings of the 30th international conference on machine learning (ICML ’13), pp 334–342Google Scholar
  23. Geerts F, Goethals B, Mielikäinen T (2004) Tiling databases. In: Proceedings of the 7th international conference on discovery science (DS ’04), pp 278–289Google Scholar
  24. Giacometti A, Soulet A (2016) Anytime algorithm for frequent pattern outlier detection. Int J Data Sci Anal 2(3):119–130CrossRefGoogle Scholar
  25. Gomes CP, van Hoeve Wj, Sabharwal A, Selman B (2007a) Counting CSP solutions using generalized XOR constraints. In: Proceedings of the 22nd AAAI conference on artificial intelligence (AAAI ’07), pp 204–209Google Scholar
  26. Gomes CP, Sabharwal A, Selman B (2007b) Near-uniform sampling of combinatorial spaces using XOR constraints. Adv Neural Inf Process Syst 19:481–488Google Scholar
  27. Guns T, Nijssen S, De Raedt L (2011) Itemset mining: a constraint programming perspective. Artif Intell 175(12–13):1951–1983MathSciNetCrossRefMATHGoogle Scholar
  28. Guns T, Nijssen S, De Raedt L (2013) \(k\)-Pattern set mining under constraints. IEEE Trans Knowl Data Eng 25(2):402–418CrossRefGoogle Scholar
  29. Hasan MA, Zaki MJ (2009) Output space sampling for graph patterns. Proc VLDB Endow 2(1):730–741CrossRefGoogle Scholar
  30. Kemmar A, Ugarte W, Loudni S, Charnois T, Lebbah Y, Boizumault P, Crémilleux B (2014) Mining relevant sequence patterns with CP-based framework. In: Proceedings of the 26th IEEE international conference on tools with artificial intelligence (ICTAI ’14), pp 552–559Google Scholar
  31. Khiari M, Boizumault P, Crémilleux B (2010) Constraint programming for mining n-ary patterns. In: Proceedings of the 16th international conference on principles and practice of constraint programming (CP ’10), pp 552–567Google Scholar
  32. Knobbe A, Ho E (2006) Pattern teams. In: Proceedings of the 10th European conference on principles of data mining and knowledge discovery (PKDD ’06), pp 577–584Google Scholar
  33. Lemmerich F, Becker M, Puppe F (2013) Difference-based estimates for generalization-aware subgroup discovery. In: Proceedings of the European conference on machine learning and principles and practice of knowledge discovery (ECML/PKDD ’13), pp 288–303Google Scholar
  34. Meel K, Vardi M, Chakraborty S, Fremont D, Seshia S, Fried D, Ivrii A, Malik S (2016) Constrained sampling and counting: universal hashing meets SAT solving. In: Proceedings of the beyond NP AAAI workshopGoogle Scholar
  35. Nijssen S, Zimmermann A (2014) Constraint-based pattern mining. In: Aggarwal CC, Han J (eds) Frequent pattern mining, chap 7. Springer International Publishing, New York, pp 147–163Google Scholar
  36. Nijssen S, Guns T, De Raedt L (2009) Correlated itemset mining in ROC space: a constraint programming approach. In: Proceedings of the 15th ACM SIGKDD conference on knowledge discovery and data mining (KDD ’09), pp 647–655Google Scholar
  37. Paramonov S, van Leeuwen M, Denecker M, De Raedt L (2015) An exercise in declarative modeling for relational query mining. In: Proceedings of the 25th international conference on inductive logic programming (ILP ’15)Google Scholar
  38. Pei J, Han J (2000) Can we push more constraints into frequent pattern mining? In: Proceedings of the 6th ACM SIGKDD conference on knowledge discovery and data mining (KDD ’00), pp 350–354Google Scholar
  39. Ramakrishnan N, Kumar D, Mishra B, Potts M, Helm R (2004) Turning CARTwheels: an alternating algorithm for mining redescriptions. In: Proceedings of the 10th ACM SIGKDD conference on knowledge discovery and data mining (KDD ’04), pp 266–275Google Scholar
  40. Shervashidze N, Vishwanathan S, Petri T, Mehlhorn K, Borgwardt KM (2009) Efficient graphlet kernels for large graph comparison. In: Proceedings of the 12th international conference on artificial intelligence and statistics (AISTATS ’09), pp 488–495Google Scholar
  41. Soos M (2010) Enhanced Gaussian elimination in DPLL-based SAT solvers. In: Proceedings of the pragmatics of SAT workshop (POS ’10), pp 2–14Google Scholar
  42. Uno T, Kiyomi M, Arimura H (2005) LCM ver. 3: collaboration of array, bitmap and prefix tree for frequent itemset mining. In: Proceedings of the 1st international workshop on open source data mining: frequent pattern mining implementations (OSDM ’05), pp 77–86Google Scholar
  43. Zaki MJ, Parthasarathy S, Ogihara M, Li W (1997) New algorithms for fast discovery of association rules. In: Proceedings of the 3rd ACM SIGKDD conference on knowledge discovery and data mining (KDD ’97), pp 283–296Google Scholar
  44. Zimmermann A, Nijssen S (2014) Supervised pattern mining and applications to classification. In: Aggarwal CC, Han J (eds) Frequent pattern mining, chap 17. Springer International Publishing, New York, pp 425–442Google Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceKU LeuvenLeuvenBelgium
  2. 2.LIACSLeiden UniversityLeidenThe Netherlands

Personalised recommendations