Andrew G, Arora R, Bilmes J, Livescu K (2013) Deep canonical correlation analysis. In: Proceedings of the 30th international conference on machine learning, vol 28, pp 1247–1255
Dähne S, Nikulin VV, Ramírez D, Schreier PJ, Müller KR, Haufe S (2014) Finding brain oscillations with power dependencies in neuroimaging data. NeuroImage 96:334–348
Article
Google Scholar
Damianou A, Ek C, Titsias MK, Lawrence ND (2012) Manifold relevance determination. In: Proceedings of the 29th international conference on machine learning, pp 145–152
Fisher J, Darrell T (2003) Speaker association with signal-level audiovisual fusion. IEEE Trans Multimed 6(3):406–413
Article
Google Scholar
Hardoon D, Szedmak S, Shawe-Taylor J (2004) Canonical correlation analysis: an overview with application to learning methods. Neural Comput 16(12):2639–2664. doi:10.1162/0899766042321814
Article
MATH
Google Scholar
Hasson U, Nir Y, Levy I, Fuhrmann G, Malach R (2004) Intersubject synchronization of cortical activity during natural vision. Science 303(5664):1634–1640
Article
Google Scholar
Hastie T, Tibshirani R, Friedman J (2003) The elements of statistical learning: data mining, inference, and prediction. Springer, New York
MATH
Google Scholar
Hotelling H (1936) Relations between two sets of variates. Biometrika 28:321–377
Article
MATH
Google Scholar
Hsieh WW (2000) Nonlinear canonical correlation analysis by neural networks. Neural Netw 13:1095–1105
Article
Google Scholar
Hwang H, Jung K, Takane Y, Woodward TS (2013) A unified approach to multiple-set canonical correlation analysis and principal components analysis. Br J Math Stat Psychol 66(2):308–321. doi:10.1111/j.2044-8317.2012.02052.x
MathSciNet
Article
Google Scholar
Kettenring J (1971) Canonical analysis of several sets of variables. Biometrika 58:433–451
MathSciNet
Article
MATH
Google Scholar
Klami A, Virtanen S, Kaski S (2013) Bayesian canonical correlation analysis. J Mach Learn Res 14:965–1003
MathSciNet
MATH
Google Scholar
Klami A, Virtanen S, Leppäho E (2015) Group factor analysis. IEEE Trans Neural Netw Learn Syst 26(9):2136–2147. doi:10.1109/TNNLS.2014.2376974
MathSciNet
Article
Google Scholar
Korpela J, Henelius A (2016) Cocoreg: extracts shared variation in collections of datasets using regression models. http://cran.r-project.org/package=cocoreg
Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, Amsterdam
MATH
Google Scholar
Liaw A, Wiener M (2002) Classification and regression by randomforest. R News 2(3):18–22. https://cran.r-project.org/package=randomForest
Meyer D, Dimitriadou E, Hornik K, Weingessel A, Leisch F (2014) e1071: misc functions of the department of statistics (e1071), Technische Universität Wien. http://cran.r-project.org/package=e1071
Müller KE (1982) Understanding canonical correlation through the general linear model and principal components. Am Stat 36(4):342–354. doi:10.1080/00031305.1982.10483045
MATH
Google Scholar
Nguyen HV, Müller E, Vreeken J, Efros P, Böhm K (2014) Multivariate maximal correlation analysis. In: Proceedings of the 31st international conference on machine learning, pp 775–783
R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, http://www.R-project.org/
Tenenhaus A (2011) Regularized generalized canonical correlation analysis and PLS path modeling. Psychometrika 76(2):257–284
MathSciNet
Article
MATH
Google Scholar
Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B 58(1):267–288
MathSciNet
MATH
Google Scholar
Timmerman ME, Kiers H (2003) Four simultaneous component models for the analysis of multivariate time series from more than one subject to model intraindividual and interindividual differences. Psychometrika 68(1):105–121. doi:10.1007/BF02296656
MathSciNet
Article
MATH
Google Scholar
Virtanen S, Klami A, Khan SA, Kaski S (2012) CCAGFA: Bayesian canonical correlation analysis and group factor analysis. http://cran.r-project.org/package=CCAGFA