Aha DW, Kibler D, Albert MK (1991) Instance-based learning algorithms. Mach Learn 6(1):37–66
Google Scholar
Azuaje F (2011) Integrative data analysis for biomarker discovery. In: Bioinformatics and biomarker discovery: omic data analysis for personalized medicine, pp 137–154
Bache K, Lichman M (2013) UCI machine learning repository
Baldi P, Chauvin Y, Hunkapliier Y, McClure M (1994) Hidden Markov models of biological primary sequence information. Proc Natl Acad Sci USA 91(3):1059–1063
Article
Google Scholar
Batista GEAPA, Wang X, Keogh EJ (2011) A complexity-invariant distance measure for time series. In SDM’11. SIAM / Omnipress, Mesa, pp 699–710
Baxter RA, Williams GJ, He H (2001) Feature selection for temporal health records. In PAKDD, London, UK. Springer-Verlag, London, pp 198–209
Ben Taieb S, Bontempi G, Atiya AF, Sorjamaa A (2012) A review and comparison of strategies for multi-step ahead time series forecasting based on the nn5 forecasting competition. Expert Syst Appl 39(8):7067–7083
Article
Google Scholar
Ben Taieb S, Sorjamaa A, Bontempi G (2010) Multiple-output modeling for multi-step-ahead time series forecasting. Neurocomputing 73:1950–1957
Article
Google Scholar
Bengio S, Fessant F, Collobert D (1996) Use of modular architectures for time series prediction. Neural Process Lett 3:101–106
Article
Google Scholar
Bishop C (2006) Pattern recognition and machine learning., Information science and statisticsSpringer, New York
MATH
Google Scholar
Bontempi G, Ben Taieb S (2011) Conditionally dependent strategies for multiple-step-ahead prediction in local learning. Int J Forecast 27(2004):689–699
Article
Google Scholar
Bontempi G, Birattari M, and Bersini H (1998) Lazy learning for iterated time-series prediction. In Suykens JAK, Vandewalle J (eds) IW on advanced black-box tech for nonlinear modeling, Leuven, Belgium. Katholieke University, Leuven, pp 62–68
Bradley PS, Reina CA, Fayyad UM (2000) Clustering very large databases using EM mixture models. In: Pattern recognition, international conference on 2:2076+
Brahim-Belhouari S, Bermak A (2004) Gaussian process for nonstationary time series prediction. Comput Stat Data Anal 47(4):705–712
Article
MATH
MathSciNet
Google Scholar
Cadez I, Heckerman D, Meek C, Smyth P, White S (2000) Visualization of navigation patterns on a web site using model-based clustering. In: Proceedings of the sixth ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’00, New York, NY, USA. ACM, New York, pp 280–284
Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh EJ (2008) Querying and mining of time series data: experimental comparison of representations and distance measures. Proc VLDB Endow 1(2):1542–1552
Article
Google Scholar
Geurts P (2001) Pattern extraction for time series classification. In: Principles of data mining and knowledge discovery. LNCS, vol 2168. Springer, Heidelberg, pp 115–127
Graves A (2012) Supervised sequence labelling with recurrent neural networks., Studies in computational intelligenceSpringer, New York
Book
MATH
Google Scholar
Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software: an update. SIGKDD Explor Newsl 11(1):10–18
Article
Google Scholar
Hartigan JA, Wong MA (1979) A k-means clustering algorithm. JSTOR Appl Stat 28(1):100–108
Article
MATH
Google Scholar
Henriques R, Antunes C (2012) On the need of new approaches for the novel problem of long-term prediction over multi-dimensional data. In: Lee R (ed) Computer and information science 2012, vol 429., Studies in computational intelligenceSpringer, Berlin, pp 121–138
Chapter
Google Scholar
Henriques R, Antunes C (2014) Learning predictive models from integrated healthcare data: capturing temporal and cross-attribute dependencies. In: HICSS, IEEE
Henriques R, Pina S, Antunes C (2013) Temporal mining of integrated healthcare data: methods, revealings and implications. In: SDM IW on data mining for medicine and healthcare. SIAM, pp 52–60
Jain AK, Murty MN, Flynn PJ (1999) Data clustering: a review. ACM Comput Surv 31(3):264–323
Article
Google Scholar
Ji Y, Hao J, Reyhani N, Lendasse A (2005) Direct and recursive prediction of time series using mutual information selection. In: IWANN. LNCS, vol 3512. Springer, Heidelberg, pp 1010–1017
Kirshner S (2005) Modeling of multivariate time series using hidden Markov models. PhD thesis, AAI3164062
Kriegel H-P, Kröger P, Sander J, Zimek A (2011) Density-based clustering. Wiley Interdisc Rew 1(3):231–240
Google Scholar
Letham B, Rudin C, Madigan D (2013) Sequential event prediction. Mach Learn 93(2–3):357–380
Article
MATH
MathSciNet
Google Scholar
Lockett AJ, Miikkulainen R (2009) Temporal convolution machines for sequence learning. Technical report AI-09-04, University of Texas at Austin
Mantaci S, Restivo A, Sciortino M (2008) Distance measures for biological sequences: some recent approaches. Int J Approx Reason 47(1):109–124
Article
MATH
MathSciNet
Google Scholar
Moen P (2000) Attribute, event sequence and event type similarity notions for data mining. University of Helsinki
Mörchen F (2003) Time series feature extraction for data mining using DWT and DFT. Reihe Informatik Univ
Mörchen F (2006) Time series knowledge mining. Wissenschaft in Dissertationen. Görich & Weiershäuser
Murphy K (2002) Dynamic Bayesian networks: representation, inference and learning. PhD thesis, UC Berkeley, Computer Science Division
Nguyen H-L, Ng W-K, Woon Y-K (2013) Closed motifs for streaming time series classification. KAIS, pp 1–25
Pearl J (1988) Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan Kaufmann Publishers Inc., San Francisco, CA
Google Scholar
Povinelli RJ, Johnson MT, Lindgren AC, Ye J (2004) Time series classification using gaussian mixture models of reconstructed phase spaces. IEEE Trans Knowl Data Eng 16(6):779–789
Article
Google Scholar
Quinlan R (1993) C4.5: programs for machine learning. Morgan Kaufmann Publishers, San Mateo, CA
Rahman S, Bakar A, Hussein Z (2008) A review on protein sequence clustering research. ICBE, vol 21., IFMBE ProceedingsSpringer, Berlin-Heidelberg, pp 275–278
Google Scholar
Roddick JF, Spiliopoulou M (2002) A survey of temporal knowledge discovery paradigms and methods. IEEE Trans Knowl Data Eng 14(4):750–767
Sorjamaa A, Hao J, Reyhani N, Ji Y, Lendasse A (2007) Methodology for long-term prediction of time series. Neurocomputing 70:2861–2869
Article
Google Scholar
Sorjamaa A, Lendasse A (2006) Time series prediction using dirrec strategy. In: ESANN’06, pp 143–148
Taieb SB, Bontempi G, Sorjamaa A, Lendasse A (2009) Long-term prediction of time series by combining direct and mimo strategies. In IJCNN, Piscataway, NJ, USA. IEEE Press, pp 1559–1566
Toft P, Rostrup E, Nielsen FA, Nielsen FA, Hansen LK, Goutte C, Goutte C (1998) On clustering fMRI time series. Neuroimage 9:298–310
Google Scholar
Tseng V, Lee C-H (2009a) Effective temporal data classification by integrating sequential pattern mining and probabilistic induction. Expert Syst Appl 36(5):9524–9532
Article
Google Scholar
Tseng VS, Lee C-H (2009b) Effective temporal data classification by integrating sequential pattern mining and probabilistic induction. Expert Syst Appl 36(5):9524–9532
Article
Google Scholar
Tsoumakas G, Katakis I (2007) Multi label classification: an overview. Int J Data Wareh Min 3(3):1–13
Article
Google Scholar
Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58(301):236–244
Article
Google Scholar
Xi X, Keogh E, Shelton C, Wei L, Ratanamahatana CA (2006) Fast time series classification using numerosity reduction. In ICML. ACM, New York, pp 1033–1040
Zhang M-L, Zhou Z-H (2005) A k-nearest neighbor based algorithm for multi-label classification. IEEE International Conference on Granular Computing, vol 2, pp 718–721