Avery MA, Alvim-Gaston M, Woolfrey JR (1999) Sythesis and structure-activity relationships of peroxidic antimalarials based on artemisinin. Adv Med Chem 4:125–217. doi:10.1016/S1067-5698(99)80005-4
Article
Google Scholar
Avery MA, Alvim-Gaston M, Rodrigues CR, Barreiro EJ, Cohen FE, Sabnis YA, Woolfrey JR (2002) Structure activity relationships of the antimalarial agent artemisinin: the development of predictive in vitro potency models using CoMFA and HQSAR methodologies. J Med Chem 45:292–303. doi:10.1021/jm0100234
Article
Google Scholar
Bakir GH, Hofmann T, Schölkopf B, Smola AJ, Taskar B, Vishwanathan SVN (2007) Predicting structured data. Neural information processing. The MIT Press, Cambridge, MA
Google Scholar
Bayardo RJ (2002) The many roles of constraints in data mining: letter from the guest editor (special issue on constraints in data mining). SIGKDD Explorations 4(1):i–ii
Bernstein A, Provost F, Hill S (2005) Toward intelligent assistance for a data mining process: an ontology-based approach for cost-sensitive classification. IEEE Trans Knowl Data Eng 17(4):503–518. doi:10.1109/TKDE.2005.67
Article
Google Scholar
Blockeel H, DeRaedt L, Ramon J (1998) Top-down induction of clustering trees. In: Proceedings of the 15th international conference on machine learning, Morgan Kaufmann, pp 55–63
Brezany P, Janciak I, Tjoa AM (2007) Ontology-based construction of grid data mining workflows. In: Data mining with ontologies: implementations, findings and frameworks, IGI Global, pp 182–210. doi: 10.4018/978-1-59904-618-1.ch010
Brinkman RR et al (2010) Modeling of biomedical experimental processes with OBI. J Biomed Semant 1(Suppl 1):S7. doi:10.1186/2041-1480-1-S1-S7
Article
Google Scholar
Button K, Deursen RW, Soldatova L, Spasić I (2013) TRAK ontology: defining standard care for the rehabilitation of knee conditions. J Biomed Inf 46(4):615–625. doi:10.1016/j.jbi.2013.04.009
Article
Google Scholar
Cannataro M, Comito C (2003) A data mining ontology for GRID programming. In: Proceedings of 1st international workshop on semantics in peer-to-peer and grid computing, pp 113–134
Caruana R (1997) Multitask learning. Mach Learn 28:41–75. doi:10.1023/A:1007379606734
Article
Google Scholar
Chapman P, et al. (1999) The CRISP-DM process model. Discussion paper. http://www.crisp-dm.org
Courtot M et al (2011) MIREOT: the minimum information to reference an external ontology term. Appl Ontol 6(1):23–33. doi:10.3233/AO-2011-0087
Google Scholar
Demšar D et al (2006) Using multi-objective classification to model communities of soil. Ecol Model 191(1):131–143. doi:10.1016/j.ecolmodel.2005.08.017
Article
Google Scholar
Diamantini C, Potena D (2008) Semantic annotation and services for KDD tools sharing and reuse. In: ICDMW ’08: proceedings of the 2008 IEEE ICDM workshops, IEEE computer society, pp 761–770. doi:10.1109/ICDMW.2008.43
Dietterich T et al (2008) Structured machine learning: the next ten years. Mach Learn 73:3–23. doi:10.1007/s10994-008-5079-1
Article
Google Scholar
Džeroski S (2007) Towards a general framework for data mining. In: KDID 2006—revised selected and invited papers, LNCS, vol 4747, Springer, pp 259–300. doi:10.1007/978-3-540-75549-4_16
Ford M, Philips L, Ste A (2004) Optimising the EVA descriptor for prediction of biological activity. Organ Biomol Chem 2:3301–3311. doi:10.1039/B410053K
Article
Google Scholar
Fox MS, Grüninger M (1994) Ontologies for enterprise integration. In: CoopIS, pp 82–89
Gangemi A, Guarino N, Masolo C, Oltramari A, Schneider L (2002) Sweetening ontologies with DOLCE. In: Proceedings of 13th international conference on knowledge engineering and knowledge management. Ontologies and the semantic web, pp 166–181. doi:10.1007/3-540-45810-7_18
Garcia J, Garcia-Penalvo FJ, Theron R (2010) A survey on ontology metrics. In: Communications in computer and information science, vol 111, Springer, Berlin, pp 22–27. doi:10.1007/978-3-642-16318-0_4
Golbraikh A, Tropsha A (2002) Beware of \(q^2\)!. J Mol Gr Mod 20:269–276. doi: 10.1016/S1093-3263(01)00123-1
Article
Google Scholar
Grenon P, Smith B, Goldberg L (2004) Biodynamic ontology: applying BFO in the biomedical domain. In: Pisanelli D, (ed) Ontologies in medicine, vol 102. IOS, Amsterdam, pp 20–38. doi:10.3233/978-1-60750-945-5-20
Gruber T (2009) Ontology. In: Ling L, Tamer Özsu M (eds) The encyclopedia of database systems. Springer, pp 1963–1965. doi:10.1007/978-0-387-39940-9_1318
Grüninger M, Fox M (1995) Methodology for the design and evaluation of ontologies. In: IJCAI’95, workshop on basic ontological issues in knowledge sharing
Guha R, Jurs PC (2004) Development of QSAR models to predict and interpret the biological activity of artemisinin analogues. J Chem Inf Comput Sci 44:1440–1449. doi:10.1021/ci0499469
Google Scholar
Guha R, Howard MT, Hutchison GR, Murray-Rust P, Rzepa H, Steinbeck C, Wegner J, Willighagen EL (2006) The blue obelisk-interoperability in chemical informatics. J Chem Inf Model 46(3):991–998. doi:10.1021/ci050400b
Article
Google Scholar
Hand DJ, Smyth P, Mannila H (2001) Principles of data mining. MIT Press, Cambridge, MA
Google Scholar
Hilario M, Nguyen P, Do H, Woznica A, Kalousis A (2011) Ontology-based meta-mining of knowledge discovery workflows. In: Meta-learning in computational intelligence, studies in computational intelligence, vol 358, Springer, Berlin, pp 273–315. doi:10.1007/978-3-642-20980-2_9
ISO (2007) ISO/IEC 11404:2007—Information Technology—General-Purpose datatypes (GPD). Tech. rep, International Organization for Standardization
Karalic A, Bratko I (1997) First order regression. Mach Learn 26:147–176. doi:10.1023/A:1007365207130
Article
MATH
Google Scholar
Keet CM, Lawrynowicz A, d’Amato C, Hilario M (2013) Modeling issues and choices in the data mining optimisation ontology. In: 8th workshop on OWL: experiences and directions (OWLED-13), 26–27 May 2013, Montpellier
Kietz JU, F Serban AB, Fischer S (2010) Data mining workflow templates for intelligent discovery assistance and Auto-Experimentation. In: ECML/PKDD 2010 workshop on third generation data mining: towards service-oriented knowledge discovery (SoKD-10), pp 1–12
King RD, Muggleton SH, Srinivasan A, Sternberg MJ (1996) Structure-activity relationships derived by machine learning: the use of atoms and their bond connectivities to predict mutagenicity by inductive logic programming. Proc Natl Acad Sci 93(1):438–442. doi:10.1073/pnas.93.1.438
Article
Google Scholar
King RD et al (2009) The automation of science. Science 324(5923):85–89. doi:10.1126/science.1165620
Article
Google Scholar
Kocev D, Džeroski S, White M, Newell G, Griffioen P (2009) Using single and multi-target regression trees and ensembles to model a compound index of vegetation condition. Ecol Model 220(8):1159–1168. doi:10.1016/j.ecolmodel.2009.01.037
Article
Google Scholar
Kocev D, Vens C, Struyf J, Džeroski S (2013) Tree ensembles for predicting structured outputs. Pattern Recognit 46(3):817–833. doi:10.1016/j.patcog.2012.09.023
Article
Google Scholar
Kremen P, Sirin E (2008) SPARQL-DL implementation experience. In: Proceedings of the fourth OWLED workshop on OWL: experiences and directions volume 496 of CEUR workshop proceedings
Kriegel HP et al (2007) Future trends in data mining. Data Min Knowl Discov 15:87–97. doi:10.1007/s10618-007-0067-9
Article
MathSciNet
Google Scholar
López MF, Gómez-Pérez A, Sierra JP, Sierra AP (1999) Building a chemical ontology using methontology and the ontology design environment. IEEE Intell Syst 14:37–46. doi:10.1109/5254.747904
Article
Google Scholar
Madjarov G, Kocev D, Gjorghevikj D, Džeroski S (2012) An extensive experimental comparison of methods for multi-label learning. Pattern Recognit 45(9):3084–3104. doi:10.1016/j.patcog.2012.03.004
Article
Google Scholar
Malone J, Parkinson H (2010) Reference and spplication ontologies. Ontogenesis. http://ontogenesis.knowledgeblog.org/295
Mannila H, Toivonen H (1997) Levelwise search and borders of theories in knowledge discovery. Data Min Knowl Discov 1(3):241–258. doi:10.1023/A:1009796218281
Article
Google Scholar
Mizoguchi R (2010) Yamato: yet another more advanced top-level ontology. http://www.ei.sanken.osaka-u.ac.jp/hozo/onto_library/YAMATO101216
Panov P (2012) A modular ontology of data mining. PhD thesis, Jožef Stefan Iternational Postgraduate School, Ljubljana, Slovenia
Panov P, Džeroski S, Soldatova LN (2008) OntoDM: an ontology of data mining. In: ICDMW ’08: proceedings of the 2008 IEEE ICDM workshops. IEEE Computer Society, pp 752–760
Panov P, Soldatova L, Džeroski S (2010) Representing entities in the OntoDM data mining ontology. In: Inductive databases and constraint-based data mining, Springer, New York, pp 27–58. doi:10.1007/978-1-4419-7738-0_2
Panov P, Soldatova L, Džeroski S (2013) OntoDM-KDD: ontology for representing the knowledge discovery process. In: DS 2013, LNAI 8140, Springer, Berlin, pp 126–140. doi:10.1007/978-3-642-40897-7_9
Podpečan V, Zemenova M, Lavrač N (2012) Orange4WS environment for service-oriented data mining. Comput J 55(1):82–98. doi:10.1093/comjnl/bxr077
Article
Google Scholar
Qi D, King RD, Hopkins AL, Bickerton GRJ, Soldatova LN (2010) An ontology for description of drug discovery investigations. J Integr Bioinf 7(3):126. doi:10.2390/biecoll-jib-2010-126
Google Scholar
Robinson P, Bauer S (2011) Introduction to bio-ontologies. Chapman & Hall, London
Google Scholar
Serban F, Vanschoren J, Kietz J, Bernstein A (2013) A survey of intelligent assistants for data analysis. ACM Comput Surv 45(3):31.1–31.35. doi:10.1145/2480741.2480748
Article
Google Scholar
Silla C, Freitas A (2011) A survey of hierarchical classification across different application domains. Data Min Know Discov 22:31–72. doi:10.1007/s10618-010-0175-9
Article
MATH
MathSciNet
Google Scholar
Sirin E, Parsia B (2007) SPARQL-DL: SPARQL query for OWL-DL. In: 3rd OWL experiences and directions workshop (OWLED-2007)
Slavkov I, Gjorgjioski V, Struyf J, Džeroski S (2010) Finding explained groups of time-course gene expression profiles with predictive clustering trees. Mol BioSyst 6:729–740. doi:10.1039/b913690h
Article
Google Scholar
Smith B et al (2005) Relations in biomedical ontologies. Genome Biol 6(5):R46. doi:10.1186/gb-2005-6-5-r46
Article
Google Scholar
Smith B et al (2007) The OBO foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotech 25(11):1251–1255. doi:10.1038/nbt1346
Article
Google Scholar
Smith B, Ceusters W (2010) Ontological realism: a methodology for coordinated evolution of scientific ontologies. Appl Ontol 5(3–4):139–188. doi:10.3233/AO-2010-0079
Google Scholar
Soldatova LN, Lord Ph, Sansone SA, Stephens SM, Shah NH (2010) Selected papers from the 12th annual bio-ontologies meeting. J Biomed Semant 1(Suppl 1):I1
Article
Google Scholar
Spjuth O, Willighagen EL, Guha R, Eklund M, Wikberg JES (2010) Towards interoperable and reproducible QSAR analyses: exchange of data sets. J Cheminf 2:5. doi:10.1186/1758-2946-2-5
Article
Google Scholar
Struyf J, Dzeroski S (2005) Constraint based induction of multi-objective regression trees. In: KDID 2005. Lecture notes in computer science, vol 3933, Springer, pp 222–233. doi:10.1007/11733492_13
Suarez-Figueroa M C, Gomez-Perez A, Motta E, Gangemi A (2012) The NeOn methodology for ontology engineering. In: Ontology engineering in a networked world, pp 9–34. doi:10.1007/978-3-642-24794-1_2
Sure Y, Staab S, Struder R (2009) Ontology engineering methodology. In: Staab S, Struder R (eds) Handbook on ontologies, 2nd edn. International Handbooks on Information Systems. Springer, Berlin, Heidelberg, pp 135–152. doi:10.1007/978-3-540-92673-3_6
Tropsha A (2010) Best practices for developing predictive QSAR models. Oral presentation. http://infochim.u-strasbg.fr/CS3_2010/OralPDF/Tropsha_CS3_2010
Tsoumakas G, Katakis I (2007) Multi label classification: an overview. Int J Data Wareh Min 3(3):1–13. doi:10.4018/978-1-60566-058-5.ch021
Article
Google Scholar
Uschold M, King M (1995) Towards a methodology for building ontologies. In: Workshop on basic ontological issues in knowledge sharing, held in conjunction with IJCAI-95
Vanschoren J, Blockeel H, Pfahringer B, Holmes G (2012) Experiment databases—-a new way to share, organize and learn from experiments. Mach Learn 87(2):127–158. doi:10.1007/s10994-011-5277-0
Article
MATH
MathSciNet
Google Scholar
Vanschoren J, Soldatova L (2010) Exposé: an ontology for machine learning experimentation. Presentation at the Data Mining Jamboree, Ljubljana 2010. http://kt.ijs.si/janez_kranjc/dmo_jamboree/Expose
Vens C, Struyf J, Schietgat L, Džeroski S, Blockeel H (2008) Decision trees for hierarchical multi-label classification. Mach Learn 73(2):185–214. doi:10.1007/s10994-008-5077-3
Article
Google Scholar
Yang Q, Wu X (2006) 10 challenging problems in data mining research. Int J Inf Technol Decis Mak 5(4):597–604. doi:10.1142/S0219622006002258
Article
Google Scholar
Young D, Martin T, Venkatapathy R, Harten P (2008) Are the chemical structures in your QSAR correct? QSAR Comb Sci 27(11–12):1337–1345. doi:10.1002/qsar.200810084
Article
Google Scholar
Žáková M, Kremen P, Železný F, Lavrač N (2010) Automating knowledge discovery workflow composition through ontology-based planning. IEEE Trans Autom Sci Eng 8(2):253–264. doi:10.1109/TASE.2010.2070838
Google Scholar
Ženko B, Džeroski S (2008) Learning classification rules for multiple target attributes. In: PAKDD. Lecture notes in computer science, vol 5012. Springer, pp 454–465. doi:10.1007/978-3-540-68125-0_40