Skip to main content

Advertisement

Log in

A regularized graph layout framework for dynamic network visualization

  • Published:
Data Mining and Knowledge Discovery Aims and scope Submit manuscript

Abstract

Many real-world networks, including social and information networks, are dynamic structures that evolve over time. Such dynamic networks are typically visualized using a sequence of static graph layouts. In addition to providing a visual representation of the network structure at each time step, the sequence should preserve the mental map between layouts of consecutive time steps to allow a human to interpret the temporal evolution of the network. In this paper, we propose a framework for dynamic network visualization in the on-line setting where only present and past graph snapshots are available to create the present layout. The proposed framework creates regularized graph layouts by augmenting the cost function of a static graph layout algorithm with a grouping penalty, which discourages nodes from deviating too far from other nodes belonging to the same group, and a temporal penalty, which discourages large node movements between consecutive time steps. The penalties increase the stability of the layout sequence, thus preserving the mental map. We introduce two dynamic layout algorithms within the proposed framework, namely dynamic multidimensional scaling and dynamic graph Laplacian layout. We apply these algorithms on several data sets to illustrate the importance of both grouping and temporal regularization for producing interpretable visualizations of dynamic networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baur M, Schank T (2008) Dynamic graph drawing in Visone. Tech. rep., Universität Karlsruhe

  • Bazaraa MS, Sherali HD, Shetty CM (2006) Nonlinear programming: theory and algorithms. Wiley, New York

    Book  MATH  Google Scholar 

  • Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6): 1373–1396

    Article  MATH  Google Scholar 

  • Bender-deMoll S, McFarland DA (2006) The art and science of dynamic network visualization. J Soc Struct 7(2): 1–38

    Google Scholar 

  • Bender-deMoll S, McFarland DA (2012) SoNIA—Social Network Image Animator. http://www.stanford.edu/group/sonia/

  • Borg I, Groenen PJF (2005) Modern multidimensional scaling. Springer, New York

    Google Scholar 

  • Brandes U, Corman SR (2003) Visual unrolling of network evolution and the analysis of dynamic discourse. Inf Vis 2(1): 40–50

    Article  Google Scholar 

  • Brandes U, Mader M (2011) A quantitative comparison of stress-minimization approaches for offline dynamic graph drawing. In: Proceedings of the 19th international symposium on graph drawing, pp 99–110

  • Brandes U, Wagner D (1997) A Bayesian paradigm for dynamic graph layout. In: Proceedings of the 5th international symposium on graph drawing, pp 236–247

  • Brandes U, Wagner D (2004) visone—analysis and visualization of social networks. In: Jünger M, Mutzel P (eds) Graph drawing software. Springer, Berlin, pp 321–340

    Chapter  Google Scholar 

  • Brandes U, Fleischer D, Puppe T (2007) Dynamic spectral layout with an application to small worlds. J Graph Algorithms Appl 11(2): 325–343

    Article  MathSciNet  MATH  Google Scholar 

  • Brandes U, Indlekofer N, Mader M (2012) Visualization methods for longitudinal social networks and stochastic actor-oriented modeling. Soc Netw 34(3): 291–308

    Article  Google Scholar 

  • Branke J (2001) Dynamic graph drawing. In: Kaufmann M, Wagner D (eds) Drawing graphs: methods and models. Springer, Berlin, pp 228–246

    Chapter  Google Scholar 

  • Byrd RH, Hribar ME, Nocedal J (1999) An interior point algorithm for large-scale nonlinear programming. SIAM J Optim 9(4): 877–900

    Article  MathSciNet  MATH  Google Scholar 

  • Chi Y, Song X, Zhou D, Hino K, Tseng BL (2009) On evolutionary spectral clustering. ACM Trans Knowl Discov Data 3(4): 17

    Article  Google Scholar 

  • Costa JA, Hero III AO (2005) Classification constrained dimensionality reduction. In: Proceedings of the IEEE international conference on acoustics, speech, and signal processing, pp 1077–1080

  • de Leeuw J, Heiser WJ (1980) Multidimensional scaling with restrictions on the configuration. In: Proceedings of the 5th international symposium on multivariate analysis, pp 501–522

  • Di Battista G, Eades P, Tamassia R, Tollis IG (1999) Graph drawing: algorithms for the visualization of graphs. Prentice Hall, Upper Saddle River

    MATH  Google Scholar 

  • Eades P, Huang ML (2000) Navigating clustered graphs using force-directed methods. J Graph Algorithms Appl 4(3): 157–181

    Article  MATH  Google Scholar 

  • Eagle N, Pentland A, Lazer D (2009) Inferring friendship network structure by using mobile phone data. Proc Natl Acad Sci USA 106(36): 15274–15278

    Article  Google Scholar 

  • Erten C, Harding PJ, Kobourov SG, Wampler K, Yee G (2004) Exploring the computing literature using temporal graph visualization. In: Proceedings of the conference on visualization and data analysis, pp 45–56

  • Frishman Y, Tal A (2008) Online dynamic graph drawing. IEEE Trans Vis Comput Graphics 14(4): 727–740

    Article  Google Scholar 

  • Fruchterman TMJ, Reingold EM (1991) Graph drawing by force-directed placement. Softw Pract Exp 21(11): 1129–1164

    Article  Google Scholar 

  • Gansner ER, Koren Y, North S (2004) Graph drawing by stress majorization. In: Proceedings of the 12th international symposium on graph drawings, pp 239–250

  • Hall KM (1970) An r-dimensional quadratic placement algorithm. Manag Sci 17(3): 219–229

    Article  MATH  Google Scholar 

  • Herman I, Melançon G, Marshall MS (2000) Graph visualisation and navigation in information visualisation: a survey. IEEE Trans Vis Comput Graphics 6(1): 24–43

    Article  Google Scholar 

  • Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1): 55–67

    Article  MathSciNet  MATH  Google Scholar 

  • Holland PW, Laskey KB, Leinhardt S (1983) Stochastic blockmodels: first steps. Soc Netw 5(2): 109–137

    Article  MathSciNet  Google Scholar 

  • Kamada T, Kawai S (1989) An algorithm for drawing general undirected graphs. Inf Process Lett 31(12): 7–15

    Article  MathSciNet  MATH  Google Scholar 

  • Koren Y (2005) Drawing graphs by eigenvectors: theory and practice. Comput Math Appl 49(11–12): 1867–1888

    Article  MathSciNet  MATH  Google Scholar 

  • Kossinets G, Watts DJ (2006) Empirical analysis of an evolving social network. Science 311(5757): 88–90

    Article  MathSciNet  MATH  Google Scholar 

  • Lee JA, Verleysen M (2007) Nonlinear dimensionality reduction. Springer, Berlin

    Book  MATH  Google Scholar 

  • Leskovec J, Kleinberg J, Faloutsos C (2007) Graph evolution: densification and shrinking diameters. ACM Trans Knowl Discov Data 1(1): 2

    Article  Google Scholar 

  • Leydesdorff L, Schank T (2008) Dynamic animations of journal maps: indicators of structural changes and interdisciplinary developments. J Am Soc Inf Sci Technol 59(11): 1810–1818

    Article  Google Scholar 

  • Lütkepohl H (1997) Handbook of matrices. Wiley, New York

    Google Scholar 

  • Misue K, Eades P, Lai W, Sugiyama K (1995) Layout adjustment and the mental map. J Vis Lang Comput 6(2): 183–210

    Article  Google Scholar 

  • MIT-WWW (2005) MIT Academic Calendar 2004–2005. http://web.mit.edu/registrar/www/calendar0405.html

  • Moody J, McFarland D, Bender-deMoll S (2005) Dynamic network visualization. Am J Sociol 110(4): 1206–1241

    Article  Google Scholar 

  • Mucha PJ, Richardson T, Macon K, Porter MA, Onnela JP (2010) Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980): 876–878

    Article  MathSciNet  MATH  Google Scholar 

  • Newcomb TM (1961) The acquaintance process. Holt, Rinehart and Winston, New York

    Book  Google Scholar 

  • Ng AY, Jordan MI, Weiss Y (2001) On spectral clustering: analysis and an algorithm. Adv. Neural Inf. Process. Syst. 14: 849–856

    Google Scholar 

  • Nordlie PG (1958) A longitudinal study of interpersonal attraction in a natural group setting. PhD thesis, University of Michigan

  • Sun J, Xie Y, Zhang H, Faloutsos C (2007) Less is more: compact matrix decomposition for large sparse graphs. In: Proceedings of the 7th SIAM conference on data mining, pp 366–377

  • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B 58(1): 267–288

    MathSciNet  MATH  Google Scholar 

  • Tong H, Papadimitriou S, Sun J, Yu PS, Faloutsos C (2008) Colibri: fast mining of large static and dynamic graphs. In: Proceedings of the 14th ACM SIGKDD international conference on knowledge discovery and data mining, pp 686–694

  • Trefethen LN, Bau D III (1997) Numerical linear algebra. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Visone-WWW (2012) visone. http://www.visone.info/

  • Wang X, Miyamoto I (1995) Generating customized layouts. In: Proceedings of the symposium on graph drawing, pp 504–515

  • Witten DM, Tibshirani R (2011) Supervised multidimensional scaling for visualization, classification, and bipartite ranking. Comput Stat Data Anal 55(1): 789–801

    Article  MathSciNet  MATH  Google Scholar 

  • Witten DM, Tibshirani R, Hastie T (2009) A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis. Biostatistics 10(3): 515–534

    Article  Google Scholar 

  • Xu KS, Kliger M, Hero III AO (2011a) Adaptive evolutionary clustering (submitted). arXiv:1104.1990

  • Xu KS, Kliger M, Hero III AO (2011b) Visualizing the temporal evolution of dynamic networks. In: Proceedings of the 9th workshop on mining and learning graphs

  • Xu KS, Kliger M, Hero III AO (2012) A regularized graph layout framework for dynamic network visualization: supporting website. http://tbayes.eecs.umich.edu/xukevin/visualization_dmkd_2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin S. Xu.

Additional information

Responsible editor: Barbara Hammer; Daniel Keim; Guy Lebanon; Neil Lawrence.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, K.S., Kliger, M. & Hero, A.O. A regularized graph layout framework for dynamic network visualization. Data Min Knowl Disc 27, 84–116 (2013). https://doi.org/10.1007/s10618-012-0286-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10618-012-0286-6

Keywords

Navigation