Mining the Semantic Web

Statistical learning for next generation knowledge bases

Abstract

In the Semantic Web vision of the World Wide Web, content will not only be accessible to humans but will also be available in machine interpretable form as ontological knowledge bases. Ontological knowledge bases enable formal querying and reasoning and, consequently, a main research focus has been the investigation of how deductive reasoning can be utilized in ontological representations to enable more advanced applications. However, purely logic methods have not yet proven to be very effective for several reasons: First, there still is the unsolved problem of scalability of reasoning to Web scale. Second, logical reasoning has problems with uncertain information, which is abundant on Semantic Web data due to its distributed and heterogeneous nature. Third, the construction of ontological knowledge bases suitable for advanced reasoning techniques is complex, which ultimately results in a lack of such expressive real-world data sets with large amounts of instance data. From another perspective, the more expressive structured representations open up new opportunities for data mining, knowledge extraction and machine learning techniques. If moving towards the idea that part of the knowledge already lies in the data, inductive methods appear promising, in particular since inductive methods can inherently handle noisy, inconsistent, uncertain and missing data. While there has been broad coverage of inducing concept structures from less structured sources (text, Web pages), like in ontology learning, given the problems mentioned above, we focus on new methods for dealing with Semantic Web knowledge bases, relying on statistical inference on their standard representations. We argue that machine learning research has to offer a wide variety of methods applicable to different expressivity levels of Semantic Web knowledge bases: ranging from weakly expressive but widely available knowledge bases in RDF to highly expressive first-order knowledge bases, this paper surveys statistical approaches to mining the Semantic Web. We specifically cover similarity and distance-based methods, kernel machines, multivariate prediction models, relational graphical models and first-order probabilistic learning approaches and discuss their applicability to Semantic Web representations. Finally we present selected experiments which were conducted on Semantic Web mining tasks for some of the algorithms presented before. This is intended to show the breadth and general potential of this exiting new research and application area for data mining.

This is a preview of subscription content, access via your institution.

References

  1. Baader, F, Calvanese, D, McGuinness, D, Nardi, D, Patel-Schneider, P (eds) (2003) The description logic handbook. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  2. Berners-Lee T, Hendler J, Lassila O (2001) The Semantic Web. Scientific American

  3. Bicer V, Tran T, Gossen A (2011) Relational kernel machines for learning from graph-structured rdf data. In: Antoniou G et al (eds) Proceedings of the 8th extended Semantic Web conference, ESWC 2011, vol 6643 of LNCS. Springer, pp 47–62

  4. Bizer C, Heath T, Berners-Lee T (2009) Linked data—the story so far. Int J Seman Web Inform Syst 5(3): 1–22

    Article  Google Scholar 

  5. Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3: 993–1022

    MATH  Google Scholar 

  6. Bloehdorn S, Sure Y (2007) Kernel methods for mining instance data in ontologies. In: Aberer K et al (eds) Proceedings of the 6th international Semantic Web conference, ISWC2007, vol 4825 of LNCS. Springer, pp 58–71

  7. Bloehdorn S, Haase P, Sure Y, Voelker J (2006) Ontology evolution. In: Davies J, Studer R, Warren P (eds) Semantic Web rechnologies. Wiley, New York

    Google Scholar 

  8. Bock H (1999) Analysis of symbolic data: exploratory methods for extracting statistical information from complex data. Springer-Verlag, Berlin

    Google Scholar 

  9. Borgida A, Walsh T, Hirsh H (2005) Towards measuring similarity in description logics. In: Horrocks I, Sattler U, Wolter F (eds) Working notes of the international description logics workshop, vol 147 of CEUR workshop proceedings, Edinburgh, UK

  10. Brickley D, Miller L (2007) FOAF vocabulary specification. Technical report, FOAF project. Published online on May 24th, 2007 at http://xmlns.com/foaf/spec/20070524.html

  11. Bright MW, Hurson AR, Pakzad SH (1994) Automated resolution of semantic heterogeneity in multidatabases. ACM Trans Database Syst 19(2): 212–253

    Article  Google Scholar 

  12. Buitelaar P, Olejnik D, Sintek M (2004) A protege plug-in for ontology extraction from text based on linguistic analysis. In: Proceedings of the 1st European Semantic Web Symposium (ESWS)

  13. Bundschus M, Yu S, Tresp V, Rettinger A, Dejori M, Kriegel H-P (2009) Hierarchical bayesian models for collaborative tagging systems. In: IEEE International Conference on Data Mining series (ICDM 2009)

  14. Carbonetto P, Kisynski J, de Freitas N, Poole, D (2005) Nonparametric bayesian logic. In: Proc. 21st UAI

  15. Cimiano P, Völker J (2005) Text 2 onto-a framework for ontology learning and data-driven change discovery

  16. Cimiano P, Hotho A, Staab S (2005) Learning concept hierarchies from text corpora using formal concept analysis. J Artif Intell Res 24: 305–339

    MATH  Google Scholar 

  17. Cohen W, Hirsh H (1994) Learning the CLASSIC description logic. In: Torasso P, Doyle J, Sandewall E (eds) Proceedings of the 4th international conference on the principles of knowledge representation and reasoning. Morgan Kaufmann, pp 121–133

  18. Cumby C, Roth D (2003) On kernel methods for relational learning. In: Fawcett T, Mishra N (eds) Proceedings of the 20th international conference on machine learning, ICML2003. AAAI Press, pp 107–114

  19. d’Amato C, Fanizzi N, Esposito F (2005) A semantic similarity measure for expressive description logics. In: Pettorossi A (ed) Proceedings of Convegno Italiano di Logica Computazionale (CILC05), Rome, Italy. http://www.disp.uniroma2.it/CILC2005/downloads/papers/15.dAmato_CILC05.pdf.

  20. d’Amato C, Fanizzi N, Esposito F (2006a) A dissimilarity measure for \({\mathcal ALC}\) concept descriptions. In: Proceedings of the 21st annual ACM symposium of applied computing, SAC2006, vol 2, Dijon, France. ACM, pp 1695–1699

  21. d’Amato C, Fanizzi N, Esposito F (2006b) Reasoning by analogy in description logics through instance-based learning. In: Tummarello G, Bouquet P, Signore O (eds) Proceedings of Semantic Web applications and perspectives, 3rd Italian Semantic Web Workshop, SWAP2006, vol 201 of CEUR workshop proceedings, Pisa, Italy

  22. d’Amato C, Fanizzi N, Esposito F (2008a) Analogical reasoning in description logics. In: da Costa P et al (eds) Uncertainty reasoning for the Semantic Web I, vol 5327 of LNAI. Springer, pp 336–354

  23. d’Amato C, Fanizzi N, Esposito F (2008b) Query answering and ontology population: an inductive approach. In: Bechhofer S et al (eds) Proceedings of the 5th European Semantic Web Conference, ESWC2008, vol 5021 of LNCS. Springer, pp 288–302

  24. d’Amato C, Staab S, Fanizzi N (2008c) On the influence of description logics ontologies on conceptual similarity. In: Gangemi A, Euzenat J (eds) Proceedings of the 16th EKAW conference, EKAW2008, vol 5268 of LNAI. Springer, pp 48–63

  25. da Costa P, d’Amato C, Fanizzi N, Laskey K, Laskey K, Lukasiewicz T, Nickles M, Pool M (eds) (2008) Uncertainty reasoning for the Semantic Web I, vol 5327 of LNCS. Springer

  26. De Raedt L (2008) Logical and relational learning: from ILP to MRDM (Cognitive Technologies). Springer-Verlag New York, Inc., Secaucus

    Google Scholar 

  27. De Raedt L, Frasconi P, Kersting K, Muggleton S (eds) (2008). Probabilistic inductive logic programming—theory and applications, vol 4911 of Lecture notes in computer science. Springer

  28. De Salvo Braz R, Amir E, Roth D (2005) Lifted first-order probabilistic inference. In: IJCAI’05: proceedings of the 19th international joint conference on artificial intelligence, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc., pp 1319–1325

  29. Ding Z (2005) BayesOWL: A probabilistic framework for Semantic Web. PhD thesis, University of Maryland, Baltimore

  30. Ding L, Kolari P, Ding Z, Avancha S (2007) Using ontologies in the Semantic Web: a survey. Ontologies 14:79–113

    Google Scholar 

  31. Domingos P, Richardson M (2007) Markov logic: a unifying framework for statistical relational learning. In: Getoor L, Taskar B (eds) Introduction to statistical relational learning. MIT Press, Cambridge

    Google Scholar 

  32. Duda R, Hart P, Stork D (2001) Pattern classification, 2nd edn. Wiley

  33. Euzenat J, Shvaiko P (2007) Ontology matching. Springer, New York

    MATH  Google Scholar 

  34. Fanizzi N, d’Amato C (2006) A declarative kernel for \({\mathcal{ALC}}\) concept descriptions. In: Esposito F et al (eds) Proceedings of the 16th international symposium on methodologies for intelligent systems, ISMIS2006, vol 4203 of LNAI. Springer, pp 322–331

  35. Fanizzi N, d’Amato C (2007) Inductive concept retrieval and query answering with semantic knowledge bases through kernel methods. In: Apolloni B, Howlett R, Jain L (eds) Proceedings of the 11th international conference on knowledge-based intelligent information and engineering systems, KES2007, vol 4692 of LNAI, pp 148–155. Springer

  36. Fanizzi N, d’Amato C, Esposito F (2007) Induction of optimal semi-distances for individuals based on feature sets. In: Calvanese D et al (eds) Working notes of the 20th international description logics workshop, DL2007, vol 250 of CEUR workshop proceedings, Bressanone, Italy

  37. Fanizzi N, d’Amato C, and Esposito F (2008a) DL-Foil: concept learning in Description Logics. In: Zelezný F, Lavrač N (eds) Proceedings of the 18th international conference on inductive logic programming, ILP2008, vol 5194 of LNAI, Prague, Czech Republic. Springer, pp 107–121.

  38. Fanizzi N, d’Amato C, Esposito F (2008b) Evolutionary conceptual clustering based on induced pseudo-metrics. Seman Web Inform Syst 4(3): 44–67

    Article  Google Scholar 

  39. Fanizzi N, d’Amato C, Esposito F (2008c) Learning with kernels in description logics. In: Zelezný F, Lavrač N (eds) Proceedings of the 18th international conference on inductive logic programming, ILP2008, vol 5194 of LNAI. Springer, pp 210–225

  40. Fanizzi N, d’Amato C, Esposito F (2008d) Statistical learning for inductive query answering on OWL ontologies. In: Sheth A et al (eds) Proceedings of the 7th international Semantic Web conference, ISWC2008, vol 5318 of LNCS, pp 195–212. Springer

  41. Fanizzi N, d’Amato C, Esposito F (2009) ReduCE: a Reduced Coulomb Energy network method for approximate classification. In: Aroyo L et al (eds) Proceedings of the 6th European Semantic Web conference, ESWC2009, vol 5554 of LNCS, pp 323–337. Springer

  42. Gärtner T, Flach P, Wrobel S (2003) On graph kernels: hardness results and efficient alternatives. In: Schölkopf B, Warmuth MK, (eds) Computational learning theory and kernel machines (COLT/Kernel 2003), vol 2777 of Lecture notes in computer science, pp 129–143. Springer, Berlin

  43. Gärtner T, Lloyd J, Flach P (2004) Kernels and distances for structured data. Mach Learn 57(3): 205–232

    MATH  Article  Google Scholar 

  44. Getoor, L, Taskar, B (eds) (2007) Introduction to statistical relational learning. MIT Press, Cambridge

    MATH  Google Scholar 

  45. Getoor L, Friedman N, Koller D, Pferrer A, Taskar B (2007) Probabilistic relational models. In: Getoor L, Taskar B (eds) Introduction to statistical relational learning. MIT Press, Cambridge

    Google Scholar 

  46. Giugno R, Lukasiewicz T (2002) P-\({\mathcal{SHOQ}}\)(D): a probabilistic extension of \({\mathcal{SHOQ}}\)(D) for probabilistic ontologies in the Semantic Web. In: JELIA ’02: proceedings of the European conference on logics in artificial intelligence. Springer-Verlag, London, pp 86–97

  47. Grobelnik M, Mladenic D (2006) Knowledge discovery for ontology construction. In: Davies J, Studer R, Warren P (eds) Semantic Web technologies. Wiley, New York

    Google Scholar 

  48. Hastie T, Tibshirani R, Friedman J (2001) The elements of statistical learning—data mining, inference, and prediction. Springer, New York

    MATH  Google Scholar 

  49. Heckerman D, Geiger D, Chickering D (1995) Learning bayesian networks: the combination of knowledge and statistical data. Mach Learn 20(3): 197–243

    MATH  Google Scholar 

  50. Hitzler P, Vrandec̆ić D (2005) Resolution-based approximate reasoning for OWL DL. In: Gil Y et al (eds) Proceedings of the 4th international Semantic Web conference, ISWC2005, number 3279 in LNCS. Springer, Galway, pp 383–397

  51. Horrocks I, Patel-Schneider P, Boley H, Tabet S, Grosof B, Dean M (2004) Swrl: a Semantic Web rule language combining owl and ruleml. W3C Member Submission 21: 79

    Google Scholar 

  52. Horvth T, Grtner T, Wrobel S (2004) Cyclic pattern kernels for predictive graph mining. In: Kim W, Kohavi R, Gehrke J, DuMouchel W (eds) Proceedings of the 10t ACM SIGKDD international conference on knowledge discovery and data mining (KDD 2004), August 22–25, 2004, Seattle, WA, USA. ACM Press, New York, pp 158–167

  53. Huang Y, Tresp V, Bundschus M, Rettinger A (2009) Scalable relational learning for sparse and incomplete domains. In: Proceedings of the international workshop on statistical relational learning (SRL-2009)

  54. Huang Y, Tresp V, Bundschus M, Rettinger A (2010) Multivariate structured prediction for learning on Semantic Web. In: Proc. of the 20th international conference on inductive logic programming (ILP 2010)

  55. Huynh TN, Mooney RJ (2011) Online structure learning for markov logic networks. In: Proceedings of the European conference on machine learning and principles and practice of knowledge discovery in databases (ECML-PKDD 2011), vol 2, pp 81–96

  56. Iannone L, Palmisano I, Fanizzi N (2007) An algorithm based on counterfactuals for concept learning in the Semantic Web. Appl Intell 26(2): 139–159

    Article  Google Scholar 

  57. Jaeger M (1997) Relational bayesian networks. In: Proceedings of the 13th conference on uncertainty in artificial intelligence (UAI)

  58. Janowicz K (2006) Sim-DL: Towards a semantic similarity measurement theory for the Description Logic \({\mathcal{ALCNR}}\) in geographic information retrieval. In: Meersman R et al (eds) Proceedings of SeBGIS 2006, OTM workshops, vol 4278 of LNCS. Springer, pp 1681–1692

  59. Janowicz K, Wilkes M (2009) Sim-dl a : A novel semantic similarity measure for description logics reducing inter-concept to inter-instance similarity. In: Proceedings of the 6th annual European Semantic Web conference (ESWC2009), vol 5554 of LNCS. Springer, pp 353–367

  60. Janowicz K, Keßler C, Schwarz M, Wilkes M, Panov I, Espeter M, Bäumer B (2007) Algorithm, implementation and application of the sim-dl similarity server. In: Proceedings of GeoS 2007, 2nd international conference on geospatial semantics, LNCS. Springer, pp 128–145

  61. Jarvelin K, Kekalainen J (2000) IR evaluation methods for retrieving highly relevant documents. In: SIGIR’00

  62. Karatzoglou A, Amatriain X, Baltrunas L, Oliver N (2010) Multiverse recommendation: n-dimensional tensor factorization for context-aware collaborative filtering. In: Proceedings of the fourth ACM conference on Recommender systems, RecSys ’10. ACM, New York, pp 79–86

  63. Kersting K, De Raedt L (2001) Bayesian logic programs. Technical report, Albert-Ludwigs University at Freiburg

  64. Kiefer C, Bernstein A, Locher A (2008) Adding data mining support to sparql via statistical relational learning methods. In ESWC 2008. Springer-Verlag

  65. Kifer M (2008) Rule interchange format: the framework. In: Web reasoning and rule systems, pp 1–11

  66. Koller D, Pfeffer A (1998) Probabilistic frame-based systems. In Proceedings of the national conference on artificial intelligence (AAAI)

  67. Koller D, Levy AY, Pfeffer A (1997) P-CLASSIC: a tractable probablistic description logic. In: AAAI/IAAI, pp 390–397

  68. Koren Y (2008) Factorization meets the neighborhood: a multifaceted collaborative filtering model. In Proceeding of the 14th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp 426–434

  69. Lafferty JD, McCallum A, Pereira FCN (2001) Conditional random fields: probabilistic models for segmenting andlabeling sequence data. In: International conference on machine learning

  70. Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature

  71. Lee J, Kim M, Lee Y (1993) Information retrieval based on conceptual distance in is-a hierarchies. J Documentation 2(49): 188–207

    Article  Google Scholar 

  72. Lehmann J (2009) DL-Learner: learning concepts in description logics. J Mach Learn Res 10:2639–2642

    Google Scholar 

  73. Lehmann J, Hitzler P (2008) A refinement operator based learning algorithm for the \({{\mathcal ALC}}\) description logic. In: Blockeel H, Ramon J, Shavlik J, Tadepalli P (eds) Proceedings of the 17th international conference on inductive logic programming, ILP2007, vol 4894 of LNCS. Springer

  74. Lippert C, Huang Y, Weber SH, Tresp V, Schubert M, Kriegel H-P (2008) Relation prediction in multi-relational domains using matrix factorization. Technical report. Siemens

  75. Lisi FA, Esposito F (2005) An ilp perspective on the Semantic Web. In: Proceedings of SWAP 2005, the 2nd Italian Semantic Web workshop, Trento, Italy, December 14–16, 2005. CEUR workshop proceedings

  76. Lukasiewicz T (2007) Probabilistic description logic programs. Int J Approx Reason 45(2): 288–307

    MathSciNet  MATH  Article  Google Scholar 

  77. Maedche A, Staab S (2004) Ontology learning. In: Staab S, Studer R (eds) Handbook on ontologies. International handbooks on information systems. Springer, pp 173–190

  78. Maynard D, Peters W, Li Y (2006) Metrics for evaluation of ontology-based information extraction. In: Proceeding of the EON 2006 workshop

  79. Mika P (2004) Social networks and the Semantic Web. In: Proceedings of the 2004 IEEE/WIC/ACM international conference on Web Intelligence, WI ’04. IEEE Computer Society, Washington, pp 285–291

  80. Milch B, Zettlemoyer LS, Kersting K, Haimes M, Kaelbling LP (2008) Lifted probabilistic inference with counting formulas. In: AAAI’08: proceedings of the 23rd national conference on Artificial intelligence. AAAI Press, pp 1062–1068

  81. Miles A, Brickley D (2005) SKOS core guide. W3C working draft, W3C. Published online on November 2nd, 2005 at http://www.w3.org/TR/2005/WD-swbp-skos-core-guide-20051102/

  82. Muggleton S (1996) Stochastic logic programs. In: New generation computing. Academic

  83. Newman D, Asuncion A, Smyth P, Welling M (2007) Distributed inference for latent dirichlet allocation. Adv Neural Inform Process Syst 20(1081-1088): 17–24

    Google Scholar 

  84. Ng RT, Subrahmanian VS (1990) A semantical framework for supporting subjective and conditional probabilities in deductive databases. Technical report, College Park, MD, USA

  85. Nickel M, Tresp V, Kriegel H-P (2011) A three-way model for collective learning on multi-relational data. In: Proceedings of the 28th international conference on machine learning (ICML 2011)

  86. Nixon LJB, Simperl E, Krummenacher R, Martin-Recuerda F (2008) Tuplespace-based computing for the Semantic Web: A survey of the state-of-the-art. Knowl Eng Rev 23: 181–212

    Article  Google Scholar 

  87. Passerini A, Frasconi P, De Raedt L (2006) Kernels on prolog proof trees: statistical learning in the ILP setting. J Mach Learn Res 7: 307–342

    MathSciNet  MATH  Google Scholar 

  88. Poole D (1997) The independent choice logic for modelling multiple agents under uncertainty. Artif Intell 94(1-2): 7–56

    MathSciNet  MATH  Article  Google Scholar 

  89. Poole D (2003) First-order probabilistic inference. In IJCAI’03: proceedings of the 18th international joint conference on artificial intelligence. Morgan Kaufmann Publishers Inc, San Francisco, pp 985–991

  90. Poon H, Domingos P (2010) Unsupervised ontology induction from text. In: Proceedings of the 48th annual meeting of the association for computational linguistics, ACL ’10. Association for Computational Linguistics, Stroudsburg, pp 296–305

  91. Porteous I, Newman D, Ihler A, Asuncion A, Smyth P, Welling M (2008) Fast collapsed gibbs sampling for latent dirichlet allocation. In: Proceeding of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, pp 569–577

  92. Predoiu L (2006) Information integration with bayesian description logic programs. In: Proceedings of the workshop on information integration on the Web (IIWeb 2006), in conjunction with WWW2006, Edinburgh, Scotland

  93. Predoiu L, Stuckenschmidt H (2008) Probabilistic extensions of Semantic Web languages—a survey. In: Ma Z, Wang H (eds) The Semantic Web for knowledge and data management: technologies and practices, Chap 5. Idea Group Inc

  94. Punyakanok V, Roth D, Yih W-T, Zimak D (2005) Learning and inference over constrained output. In: IJCAI’05: proceedings of the 19th international joint conference on artificial intelligence. Morgan Kaufmann Publishers Inc, San Francisco, pp 1124–1129

  95. Rada R, Mili H, Bicknell E, Blettner M (1989) Development and application of a metric on semantic nets. IEEE Trans Syst Man Cybern 19(1): 17–30

    Article  Google Scholar 

  96. Rendle S, Schmidt-Thieme L (2010) Pairwise interaction tensor factorization for personalized tag recommendation. In: WSDM 2010: proceedings of the 2010 ACM international conference on Web search and data mining. ACM

  97. Rendle S, Freudenthaler C, Schmidt-Thieme L (2010) Factorizing personalized Markov chains for next-basket recommendation. In: Proceedings of the 19th international conference on World Wide Web. ACM, pp 811–820

  98. Resnik P (1999) Semantic similarity in a taxonomy: an information-based measure and its application to problems of ambiguity in natural language. J Artif Intell Res 11: 95–130

    MATH  Google Scholar 

  99. Rettinger A, Nickles M, Tresp V (2009) Statistical relational learning with formal ontologies. In: Proceedings of the European conference on machine learning and knowledge discovery in databases, ECML/PKDD2009. Springer, pp 286–301

  100. Richardson M, Domingos P (2006) Markov logic networks. J Mach Learn Res 62(1-2): 107–136

    Article  Google Scholar 

  101. Sato T, Kameya Y, Zhou N-F (2005) Generative modeling with failure in prism. In: IJCAI’05: proceedings of the 19th international joint conference on Artificial intelligence. Morgan Kaufmann Publishers Inc, San Francisco, pp 847–852

  102. Sebag M (1997) Distance induction in first order logic. In: Džeroski S, Lavrač N (eds) Proceedings of the 7th international workshop on inductive logic programming, ILP97, vol 1297 of LNAI. Springer, pp 264–272

  103. Shawe-Taylor J, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, Cambridge

    Book  Google Scholar 

  104. Shervashidze N, Borgwardt K (2009) Fast subtree kernels on graphs. In: Bengio Y, Schuurmans D, Lafferty J, Williams C, Culotta A (eds) Advances in Neural Information Processing Systems (NIPS 2009). Neural Information Processing Systems Foundation, pp 1660–1668

  105. Singla P, Domingos P (2006) Entity resolution with markov logic. In: Proceedings of the sixth international conference on data mining, ICDM ’06. IEEE Computer Society, Washington, pp 572–582

  106. Stumme G, Hotho A, Berendt B (2006) Towards Semantic Web mining. J Web Seman 4(2): 124–143

    Article  Google Scholar 

  107. Takacs G, Pilaszy I, Nemeth B, Tikk D (2007) On the gravity recommendation system. In: Proceedings of KDD cup and workshop 2007

  108. Taskar B, Abbeel P, Koller D (2002) Discriminative probabilistic models for relational data. In: Uncertainty in artificial intelligence (UAI)

  109. Thor A, Anderson P, Raschid L, Navlakha S, Saha B, Khuller S, Zhang X (2011) Link prediction for annotation graphs using graph summarization. Springer, New York, pp 714–729

    Google Scholar 

  110. Tiropanis T, Davis H, Millard D, Weal, M (2009) Semantic technologies for learning and teaching in the web 2.0 era: a survey of uk higher education. In: Web Science 2009 conference

  111. Tresp V, Bundschus M, Rettinger A, Huang Y (2008) Towards machine learning on the Semantic Web. In: da Costa P et al (eds) Uncertainty reasoning for the Semantic Web I, vol 5327 of LNAI. Springer

  112. Tresp V, Huang Y, Jiang X, Rettinger A (2011) Graphical models for relations-modeling relational context. In: Proceedings of the international conference on knowledge discovery and information retrieval (KDIR)

  113. Velardi P, Navigli R, Cucchiarelli A, Neri F (2005) Evaluation of ontolearn, a methodology for automatic learning of ontologies. In: Buitelaar P, Cimmiano P, Magnini B (eds) Ontology Learning from text: methods, evaluation and applications. IOS Press

  114. Wermser H, Rettinger A, Tresp V (2011) Modeling and learning context-aware recommendation scenarios using tensor decomposition. In: Proc of the international conference on advances in social networks analysis and mining

  115. Xu Z, Tresp V, Yu S, Yu K, Kriegel H-P (2007) Fast inference in infinite hidden relational models. In: Frasconi P, Kersting K, Tsuda K (eds) Proceedings of mining and learning with graphs, MLG2007

  116. Yu S, Yu K, Tresp V (2005) Soft clustering on graphs. In: Advances in Neural Information Processing Systems, vol 18

  117. Yu K, Chu W, Yu S, Tresp V, Xu Z (2006) Stochastic relational models for discriminative link prediction. In: Advances in Neural Information Processing Systems, vol 19

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nicola Fanizzi.

Additional information

Responsible editor: Myra Spiliopoulou, Bamshad Mobasher, Olfa Nasraoui, Osmar Zaiane.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rettinger, A., Lösch, U., Tresp, V. et al. Mining the Semantic Web. Data Min Knowl Disc 24, 613–662 (2012). https://doi.org/10.1007/s10618-012-0253-2

Download citation

Keywords

  • Semantic Web
  • Ontology
  • Knowledge representation
  • Description logics
  • RDF
  • Linked data
  • Semantic similarity
  • Kernels
  • Multivariate prediction
  • First-order probabilistic learning
  • Relational graphical models