Learning influence from heterogeneous social networks


Influence is a complex and subtle force that governs social dynamics and user behaviors. Understanding how users influence each other can benefit various applications, e.g., viral marketing, recommendation, information retrieval and etc. While prior work has mainly focused on qualitative aspect, in this article, we present our research in quantitatively learning influence between users in heterogeneous networks. We propose a generative graphical model which leverages both heterogeneous link information and textual content associated with each user in the network to mine topic-level influence strength. Based on the learned direct influence, we further study the influence propagation and aggregation mechanisms: conservative and non-conservative propagations to derive the indirect influence. We apply the discovered influence to user behavior prediction in four different genres of social networks: Twitter, Digg, Renren, and Citation. Qualitatively, our approach can discover some interesting influence patterns from these heterogeneous networks. Quantitatively, the learned influence strength greatly improves the accuracy of user behavior prediction.

This is a preview of subscription content, log in to check access.


  1. Anagnostopoulos A, Kumar R, Mahdian M (2008) Influence and correlation in social networks. In: KDD’08, pp 7–15

  2. Bonacich P (1972) Factoring and weighting approaches to status scores and clique identification. J Math Sociol 2(1): 113–120

    Article  Google Scholar 

  3. Bonacich P (1987) Power and centrality: a family of measures. Am J Sociol 92(5): 1170–1182

    Article  Google Scholar 

  4. Bonacich P, Lloyd P (2001) Eigenvector-like measures of centrality for asymmetric relations. Soc Netw 23(3): 191–201

    Article  Google Scholar 

  5. Chang J, Boyd-Graber J, Blei DM (2009) Connections between the lines: augmenting social networks with text. In: KDD ’09, pp 169–178

  6. Chen W, Wang C, Wang Y (2010) Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: KDD ’10

  7. Crandall D, Cosley D, Huttenlocher D, Kleinberg J, Suri S (2008) Feedback effects between similarity and social influence in online communities. In: KDD’08, pp 160–168

  8. Cui P, Wang F, Liu S, Ou M, Yang S (2011) Who should share what? item-level social influence prediction for users and posts ranking. In: SIGIR’11

  9. Dietz L, Bickel S, Scheffer T (2007) Unsupervised prediction of citation influences. In: ICML’07, pp 233–240

  10. Domingos P, Richardson M (2001) Mining the network value of customers. In: KDD’ 01, pp 57–66

  11. Doucet A, de Freitas N, Murphy K, Russell S (2000) Rao-blackwellised particle filtering for dynamic bayesian networks. In: UAI’00, pp 176–183

  12. Dourisboure Y, Geraci F, Pellegrini M (2007) Extraction and classification of dense communities in the web. In: WWW ’07, pp 461–470

  13. Fowler JH, Christakis NA (2008) Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the framingham heart study. Br Med J 337: a2338

    Article  Google Scholar 

  14. Gerrish S, Blei DM (2010) A language-based approach to measuring scholarly impact. In: ICML’10, pp 375–382

  15. Goyal A, Bonchi F, Lakshmanan LV (2010) Learning influence probabilities in social networks. In: WSDM’10, pp 207–217

  16. Granovetter M (1973) The strength of weak ties. Am J Sociol 78(6): 1360–1380

    Article  Google Scholar 

  17. Gruhl D, Guha R, Liben-Nowell D, Tomkins A (2004) Information diffusion through blogspace. In: WWW ’04, pp 491–501

  18. Guha R, Kumar R, Raghavan P, Tomkins A (2004) Propagation of trust and distrust. In: WWW ’04, pp 403–412

  19. Haveliwala TH (2002) Topic-sensitive pagerank. In: WWW’02, pp 517–526

  20. Hopcroft JE, Lou T, Tang J (2011) Who will follow you back? reciprocal relationship prediction. In: CIKM’11

  21. Iribarren JL, Moro E (2009) Impact of human activity patterns on the dynamics of information diffusion. Phys Rev Lett 103(3): 038702

    Article  Google Scholar 

  22. Jeh G, Widom J (2002) Scaling personalized web search. In: WWW’02, pp 271–279

  23. Katz L (1953) A new status index derived from sociometric analysis. Psychometrika 18(1): 39–43

    MATH  Article  Google Scholar 

  24. Kelman H (1958) Compliance, identification, and internalization: three processes of attitude change. J Confl Resolut 2(1): 51–60

    MathSciNet  Article  Google Scholar 

  25. Kempe D, Kleinberg J, Tardos E (2003) Maximizing the spread of influence through a social network. In: KDD ’03, pp 137–146

  26. King J (1987) A review of bibliometric and other science indicators and their role in research evaluation. J Inform Sci 13(5): 261–276

    Article  Google Scholar 

  27. Kiss C, Bichler M (2008) Identification of influencers—measuring influence in customer networks. Decis Support Syst 46(1): 233–253

    Article  Google Scholar 

  28. Kossinets G, Kleinberg J, Watts D (2008) The structure of information pathways in a social communication network. In: KDD ’08, pp 435–443

  29. Krackhardt D (1992) The Strength of Strong ties: the importance of philos in networks and organization. In: Nohria N, Eccles RG (eds) Networks and organizations. Harvard Business School Press, Hershey

    Google Scholar 

  30. La Fond T, Neville J (2010) Randomization tests for distinguishing social influence and homophily effects. In: WWW ’10, pp 601–610

  31. Liben-Nowell D, Kleinberg J (2008) Tracing information flow on a global scale using Internet chain-letter data. Proc Natl Acad Sci USA 105(12): 4633–4638

    Article  Google Scholar 

  32. Liu L, Tang J, Han J, Jiang M, Yang S (2010) Mining topic-level influence in heterogeneous networks. In: CIKM’10, pp 199–208

  33. Macskassy S, Provost F (2003) A simple relational classifier. In: Workshop on multi-relational data mining in conjunction with KDD’03

  34. Nallapati RM, Ahmed A, Xing E, Cohen WW (2008) Joint latent topic models for text and citations. In: KDD ’08, pp 542–550

  35. Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking: bringing order to the web. Technical Report SIDL-WP-1999-0120, Stanford University

  36. Richardson M, Domingos P (2002) Mining knowledge-sharing sites for viral marketing. In: KDD ’02, pp 61–70

  37. Rodriguez MG, Leskovec J, Krause A (2010) Inferring networks of diffusion and influence. In: KDD ’10

  38. Scripps J, Tan P-N, Esfahanian A-H (2009) Measuring the effects of preprocessing decisions and network forces in dynamic network analysis. In: KDD ’09, pp 747–756

  39. Singla P, Richardson M (2008) Yes, there is a correlation: from social networks to personal behavior on the web. In: WWW ’08, pp 655–664

  40. Sun Y, Han J, Zhao P, Yin Z, Cheng H, Wu T (2009a) RankClus: integrating clustering with ranking for heterogeneous information network analysis. In: EDBT’09

  41. Sun Y, Yu Y, Han J (2009b) Ranking-based clustering of heterogeneous information networks with star network schema. In: KDD ’09, pp 797–806

  42. Tan C, Tang J, Sun J, Lin Q, Wang F (2010) Social action tracking via noise tolerant time-varying factor graphs. In: KDD’10, pp 1049–1058

  43. Tang L, Liu H (2009) Relational learning via latent social dimensions. In: KDD ’09, pp 817–826

  44. Tang J, Sun J, Wang C, Yang Z (2009) Social influence analysis in large-scale networks. In: KDD ’09, pp 807–816

  45. Tang J, Lou T, Kleinberg J (2012) Inferring social ties across heterogenous networks. In: WSDM’12

  46. Whitfield J (2008) The secret of happiness: grinning on the internet. Nature. doi:10.1038/news.2008.918

  47. Xiang R, Neville J, Rogati M (2010) Modeling relationship strength in online social networks. In: WWW ’10, pp 981–990

  48. Yang T, Jin R, Chi Y, Zhu S (2009) Combining link and content for community detection: a discriminative approach. In: KDD ’09, pp 927–936

  49. Ye J, Chen K, Wu T, Li J, Zhao Z, Patel R, Bae M, Janardan R, Liu H, Alexander G, Reiman E (2008) Heterogeneous data fusion for alzheimer’s disease study. In: KDD ’08, pp 1025–1033

  50. Zheleva E, Sharara H, Getoor L (2009) Co-evolution of social and affiliation networks. In: KDD ’09, pp 1007–1016

Download references

Author information



Corresponding author

Correspondence to Lu Liu.

Additional information

Responsible editor: Fei Wang, Hanghang Tong, Phillip Yu, Charu Aggarwal.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, L., Tang, J., Han, J. et al. Learning influence from heterogeneous social networks. Data Min Knowl Disc 25, 511–544 (2012). https://doi.org/10.1007/s10618-012-0252-3

Download citation


  • Social influence analysis
  • Social network analysis
  • Influence propagation
  • Topic modeling