Data Mining and Knowledge Discovery

, Volume 25, Issue 3, pp 511–544 | Cite as

Learning influence from heterogeneous social networks

  • Lu LiuEmail author
  • Jie Tang
  • Jiawei Han
  • Shiqiang Yang


Influence is a complex and subtle force that governs social dynamics and user behaviors. Understanding how users influence each other can benefit various applications, e.g., viral marketing, recommendation, information retrieval and etc. While prior work has mainly focused on qualitative aspect, in this article, we present our research in quantitatively learning influence between users in heterogeneous networks. We propose a generative graphical model which leverages both heterogeneous link information and textual content associated with each user in the network to mine topic-level influence strength. Based on the learned direct influence, we further study the influence propagation and aggregation mechanisms: conservative and non-conservative propagations to derive the indirect influence. We apply the discovered influence to user behavior prediction in four different genres of social networks: Twitter, Digg, Renren, and Citation. Qualitatively, our approach can discover some interesting influence patterns from these heterogeneous networks. Quantitatively, the learned influence strength greatly improves the accuracy of user behavior prediction.


Social influence analysis Social network analysis Influence propagation Topic modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anagnostopoulos A, Kumar R, Mahdian M (2008) Influence and correlation in social networks. In: KDD’08, pp 7–15Google Scholar
  2. Bonacich P (1972) Factoring and weighting approaches to status scores and clique identification. J Math Sociol 2(1): 113–120CrossRefGoogle Scholar
  3. Bonacich P (1987) Power and centrality: a family of measures. Am J Sociol 92(5): 1170–1182CrossRefGoogle Scholar
  4. Bonacich P, Lloyd P (2001) Eigenvector-like measures of centrality for asymmetric relations. Soc Netw 23(3): 191–201CrossRefGoogle Scholar
  5. Chang J, Boyd-Graber J, Blei DM (2009) Connections between the lines: augmenting social networks with text. In: KDD ’09, pp 169–178Google Scholar
  6. Chen W, Wang C, Wang Y (2010) Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: KDD ’10Google Scholar
  7. Crandall D, Cosley D, Huttenlocher D, Kleinberg J, Suri S (2008) Feedback effects between similarity and social influence in online communities. In: KDD’08, pp 160–168Google Scholar
  8. Cui P, Wang F, Liu S, Ou M, Yang S (2011) Who should share what? item-level social influence prediction for users and posts ranking. In: SIGIR’11Google Scholar
  9. Dietz L, Bickel S, Scheffer T (2007) Unsupervised prediction of citation influences. In: ICML’07, pp 233–240Google Scholar
  10. Domingos P, Richardson M (2001) Mining the network value of customers. In: KDD’ 01, pp 57–66Google Scholar
  11. Doucet A, de Freitas N, Murphy K, Russell S (2000) Rao-blackwellised particle filtering for dynamic bayesian networks. In: UAI’00, pp 176–183Google Scholar
  12. Dourisboure Y, Geraci F, Pellegrini M (2007) Extraction and classification of dense communities in the web. In: WWW ’07, pp 461–470Google Scholar
  13. Fowler JH, Christakis NA (2008) Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the framingham heart study. Br Med J 337: a2338CrossRefGoogle Scholar
  14. Gerrish S, Blei DM (2010) A language-based approach to measuring scholarly impact. In: ICML’10, pp 375–382Google Scholar
  15. Goyal A, Bonchi F, Lakshmanan LV (2010) Learning influence probabilities in social networks. In: WSDM’10, pp 207–217Google Scholar
  16. Granovetter M (1973) The strength of weak ties. Am J Sociol 78(6): 1360–1380CrossRefGoogle Scholar
  17. Gruhl D, Guha R, Liben-Nowell D, Tomkins A (2004) Information diffusion through blogspace. In: WWW ’04, pp 491–501Google Scholar
  18. Guha R, Kumar R, Raghavan P, Tomkins A (2004) Propagation of trust and distrust. In: WWW ’04, pp 403–412Google Scholar
  19. Haveliwala TH (2002) Topic-sensitive pagerank. In: WWW’02, pp 517–526Google Scholar
  20. Hopcroft JE, Lou T, Tang J (2011) Who will follow you back? reciprocal relationship prediction. In: CIKM’11Google Scholar
  21. Iribarren JL, Moro E (2009) Impact of human activity patterns on the dynamics of information diffusion. Phys Rev Lett 103(3): 038702CrossRefGoogle Scholar
  22. Jeh G, Widom J (2002) Scaling personalized web search. In: WWW’02, pp 271–279Google Scholar
  23. Katz L (1953) A new status index derived from sociometric analysis. Psychometrika 18(1): 39–43zbMATHCrossRefGoogle Scholar
  24. Kelman H (1958) Compliance, identification, and internalization: three processes of attitude change. J Confl Resolut 2(1): 51–60MathSciNetCrossRefGoogle Scholar
  25. Kempe D, Kleinberg J, Tardos E (2003) Maximizing the spread of influence through a social network. In: KDD ’03, pp 137–146Google Scholar
  26. King J (1987) A review of bibliometric and other science indicators and their role in research evaluation. J Inform Sci 13(5): 261–276CrossRefGoogle Scholar
  27. Kiss C, Bichler M (2008) Identification of influencers—measuring influence in customer networks. Decis Support Syst 46(1): 233–253CrossRefGoogle Scholar
  28. Kossinets G, Kleinberg J, Watts D (2008) The structure of information pathways in a social communication network. In: KDD ’08, pp 435–443Google Scholar
  29. Krackhardt D (1992) The Strength of Strong ties: the importance of philos in networks and organization. In: Nohria N, Eccles RG (eds) Networks and organizations. Harvard Business School Press, HersheyGoogle Scholar
  30. La Fond T, Neville J (2010) Randomization tests for distinguishing social influence and homophily effects. In: WWW ’10, pp 601–610Google Scholar
  31. Liben-Nowell D, Kleinberg J (2008) Tracing information flow on a global scale using Internet chain-letter data. Proc Natl Acad Sci USA 105(12): 4633–4638CrossRefGoogle Scholar
  32. Liu L, Tang J, Han J, Jiang M, Yang S (2010) Mining topic-level influence in heterogeneous networks. In: CIKM’10, pp 199–208Google Scholar
  33. Macskassy S, Provost F (2003) A simple relational classifier. In: Workshop on multi-relational data mining in conjunction with KDD’03Google Scholar
  34. Nallapati RM, Ahmed A, Xing E, Cohen WW (2008) Joint latent topic models for text and citations. In: KDD ’08, pp 542–550Google Scholar
  35. Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking: bringing order to the web. Technical Report SIDL-WP-1999-0120, Stanford UniversityGoogle Scholar
  36. Richardson M, Domingos P (2002) Mining knowledge-sharing sites for viral marketing. In: KDD ’02, pp 61–70Google Scholar
  37. Rodriguez MG, Leskovec J, Krause A (2010) Inferring networks of diffusion and influence. In: KDD ’10Google Scholar
  38. Scripps J, Tan P-N, Esfahanian A-H (2009) Measuring the effects of preprocessing decisions and network forces in dynamic network analysis. In: KDD ’09, pp 747–756Google Scholar
  39. Singla P, Richardson M (2008) Yes, there is a correlation: from social networks to personal behavior on the web. In: WWW ’08, pp 655–664Google Scholar
  40. Sun Y, Han J, Zhao P, Yin Z, Cheng H, Wu T (2009a) RankClus: integrating clustering with ranking for heterogeneous information network analysis. In: EDBT’09Google Scholar
  41. Sun Y, Yu Y, Han J (2009b) Ranking-based clustering of heterogeneous information networks with star network schema. In: KDD ’09, pp 797–806Google Scholar
  42. Tan C, Tang J, Sun J, Lin Q, Wang F (2010) Social action tracking via noise tolerant time-varying factor graphs. In: KDD’10, pp 1049–1058Google Scholar
  43. Tang L, Liu H (2009) Relational learning via latent social dimensions. In: KDD ’09, pp 817–826Google Scholar
  44. Tang J, Sun J, Wang C, Yang Z (2009) Social influence analysis in large-scale networks. In: KDD ’09, pp 807–816Google Scholar
  45. Tang J, Lou T, Kleinberg J (2012) Inferring social ties across heterogenous networks. In: WSDM’12Google Scholar
  46. Whitfield J (2008) The secret of happiness: grinning on the internet. Nature. doi: 10.1038/news.2008.918
  47. Xiang R, Neville J, Rogati M (2010) Modeling relationship strength in online social networks. In: WWW ’10, pp 981–990Google Scholar
  48. Yang T, Jin R, Chi Y, Zhu S (2009) Combining link and content for community detection: a discriminative approach. In: KDD ’09, pp 927–936Google Scholar
  49. Ye J, Chen K, Wu T, Li J, Zhao Z, Patel R, Bae M, Janardan R, Liu H, Alexander G, Reiman E (2008) Heterogeneous data fusion for alzheimer’s disease study. In: KDD ’08, pp 1025–1033Google Scholar
  50. Zheleva E, Sharara H, Getoor L (2009) Co-evolution of social and affiliation networks. In: KDD ’09, pp 1007–1016Google Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  1. 1.Capital Medical UniversityBeijingChina
  2. 2.Tsinghua UniversityBeijingChina
  3. 3.University of Illinois at Urbana-ChampaignChampaignUSA

Personalised recommendations