Skip to main content
Log in

Community detection in Social Media

Performance and application considerations

  • Published:
Data Mining and Knowledge Discovery Aims and scope Submit manuscript

Abstract

The proposed survey discusses the topic of community detection in the context of Social Media. Community detection constitutes a significant tool for the analysis of complex networks by enabling the study of mesoscopic structures that are often associated with organizational and functional characteristics of the underlying networks. Community detection has proven to be valuable in a series of domains, e.g. biology, social sciences, bibliometrics. However, despite the unprecedented scale, complexity and the dynamic nature of the networks derived from Social Media data, there has only been limited discussion of community detection in this context. More specifically, there is hardly any discussion on the performance characteristics of community detection methods as well as the exploitation of their results in the context of real-world web mining and information retrieval scenarios. To this end, this survey first frames the concept of community and the problem of community detection in the context of Social Media, and provides a compact classification of existing algorithms based on their methodological principles. The survey places special emphasis on the performance of existing methods in terms of computational complexity and memory requirements. It presents both a theoretical and an experimental comparative discussion of several popular methods. In addition, it discusses the possibility for incremental application of the methods and proposes five strategies for scaling community detection to real-world networks of huge scales. Finally, the survey deals with the interpretation and exploitation of community detection results in the context of intelligent web applications and services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agichtein E, Castillo C, Donato D, Gionis A, Mishne G (2008) Finding high-quality content in social media. In: Proceedings of WSDM ’08: the international conference on Web Search and Web Data Mining, Palo Alto, CA, USA, 11–12 Feb 2008. ACM, New York, pp 183–194

  • Andersen R, Chung FRK, Lang K (2006) Local graph partitioning using PageRank vectors. In: FOCS’06: Proceedings of the 47th annual IEEE symposium on foundations of computer science, pp 475–486

  • Arenas A, Díaz-Guilera A, Pérez-Vicente CJ (2006) Synchronization reveals topological scales in complex networks. Phys Rev Lett 96(11): 114102

    Article  Google Scholar 

  • Arenas A, Duch J, Fernaández A, Gómez S (2007) Size reduction of complex networks preserving modularity. New J Phys 9: 176

    Article  Google Scholar 

  • Asur S, Parthasarathy S, Ucar D (2007) An event-based framework for characterizing the evolutionary behavior of interaction graphs. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining, San Jose, CA, USA, 12–15 Aug 2007. KDD ’07. ACM, New York, pp 913–921

  • Au Yeung CM, Gibbins N, Shadbolt N (2009) Contextualising tags in collaborative tagging systems. In: Proceedings of ACM conference on hypertext and hypermedia, pp 251–260

  • Baeza-Yates R (2007) Graphs from search engine queries. Theory and Practice of Computer Science (SOFSEM), LNCS 4362. Springer, Harrachov, pp 1–8

    Google Scholar 

  • Bagrow JP (2008) Evaluating local community methods in networks. J Stat Mech 5:P05001

    Google Scholar 

  • Barber MJ (2007) Modularity and community detection in bipartite networks. Phys Rev E 76: 066102

    Article  MathSciNet  Google Scholar 

  • Batagelj V, Zaversnik M (2003) An O(m) algorithm for cores decomposition of networks. Eprint arXiv:cs/0310049

  • Begelman G, Keller P, Smadja F (2006) Automated tag clustering: improving search and exploration in the tag space. http://www.pui.ch/phred/automated_tag_clustering

  • Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. Eprint arXiv:0803.0476

    Google Scholar 

  • Borgatti S, Everett M, Shirey P (1990) LS sets, lambda sets, and other cohesive subsets. Soc Netw 12: 337–358

    Article  MathSciNet  Google Scholar 

  • Breiger R, Boorman S, Arabie P (1975) An algorithm for clustering relational data with applications to social network analysis and comparison with multidimensional scaling. J Mathl Psychol 12: 328–383

    Article  Google Scholar 

  • Bron C, Kerbosch J (1973) Algorithm 457: finding all cliques of an undirected graph. Commun ACM 16(9): 575–577

    Article  MATH  Google Scholar 

  • Cattuto C, Benz D, Hotho A, Stumme G (2008a) Semantic grounding of tag relatedness in social bookmarking systems. In: Proceedings of ISWC 2008, Karlsruhe, Germany

  • Cattuto C, Baldassarri A, Servedio VDP, Loreto V (2008b) Emergent community structure in social tagging systems. Adv Complex Syst (ACS) 11(4): 597–608

    Article  MATH  Google Scholar 

  • Chakrabarti D (2004) Autopart: parameter-free graph partitioning and outlier detection. Lecture notes in computer science 3202. Springer, pp 112–124

  • Chakrabarti D, Kumar R, Tomkins A (2006) Evolutionary clustering. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, Philadelphia, PA, USA, 20–23 Aug 2006. KDD ’06. ACM, New York, pp 554–560

  • Chen J, Zaiane OR, Goebel R (2009a) Local community identification in social networks. In: International conference on advances in social networks analysis and mining (ASONAM), Athens, Greece

  • Chen J, Zaiane OR, Goebel R (2009b) A visual data mining approach to find overlapping communities in networks. In: International conference on advances in social networks analysis and mining (ASONAM), Athens, Greece

  • Chi Y, Zhu S, Hino K, Gong Y, Zhang Y (2009) iOLAP: a framework for analyzing the internet, social networks, and other networked data. Trans Multimed 11(3): 372–382

    Article  Google Scholar 

  • Clauset A (2005) Finding local community structure in networks. Phys Rev E 72 026132

    Google Scholar 

  • Clauset A, Newman MEJ, Moore C (2004) Finding community structure in very large networks. Phys Rev E 70:066111

    Google Scholar 

  • Danon L, Diaz-Guilera A, Duch J, Arenas A (2005) Comparing community structure identification. J Stat Mech P09008. http://iopscience.iop.org/1742-5468/2005/09/P09008/

  • Dean J, Ghemawat S (2004) Mapreduce: simplified data processing on large clusters. In: Proceedings of OSDI, 04, pp 137–150

  • Dhillon IS, Guan Y, Kulis B (2007) Weighted graph cuts without eigenvectors: a multilevel approach. IEEE Trans Pattern Anal Mach Intell 29(11): 1944–1957

    Article  Google Scholar 

  • Djidjev HN (2008) A scalable multilevel algorithm for graph clustering and community structure detection. Lecture notes in computer science, vol 4936. Springer-Verlag, Berlin, pp 117–128

  • Donetti L, Munoz MA (2004) Detecting network communities: a new systematic and efficient algorithm. J Stat Mech P10012. doi:10.1088/1742-5468/2004/10/P10012

  • Duch J, Arenas A (2005) Community detection in complex networks using extremal optimization. Phys Rev E 72:027104

    Google Scholar 

  • Falkowski T, Barth A, Spiliopoulou M (2007) DENGRAPH: a density-based community detection algorithm. In: Proceedings of web intelligence 2007, pp 112–115

  • Fenn D, Porter M, McDonald M, Williams S, Johnson N, Jones N (2009) Dynamic communities in multichannel data: an application to the foreign exchange market during the 2007–2008 credit crisis. Eprint arXiv:0811.3988

    Google Scholar 

  • Flake GW, Lawrence S, Giles CL (2000) Efficient identification of Web communities. In: Proceedings of KDD ’00, ACM, pp 150–160

  • Fortunato S (2009) Community detection in graphs. Eprint arXiv:0906.0612

  • Fortunato S (2010) Community detection in graphs. Phys Rep 486: 75–174

    Article  MathSciNet  Google Scholar 

  • Fortunato S, Castellano C (2007) Community structure in graphs. Eprint arXiv:0712.2716

    Google Scholar 

  • Fortunato S, Latora V, Marchiori M (2004) Method to find community structures based on information centrality. Phys Rev E 70: 056104

    Article  Google Scholar 

  • Franke M, Geyer-Schulz A (2009) An update algorithm for restricted random walk clustering for dynamic data sets. Adv Data Anal Classif 3(1): 63–92

    Article  MathSciNet  MATH  Google Scholar 

  • Gallo G, Grigoriadis MD, Tarjan RE (1989) A fast parametric maximum flow algorithm and applications. SIAM J Comput 18(1): 30–55

    Article  MathSciNet  MATH  Google Scholar 

  • Gemmell J, Shepitsen A, Mobasher B, Burke R (2008) Personalizing navigation in folksonomies using hierarchical tag clustering. In: Proceedings of DaWaK 2008, LNCS 5182, pp 196–205

  • Gibson D, Kumar R, Tomkins A (2005) Discovering large dense subgraphs in massive graphs. In: Proceedings of the 31st international conference on very large data bases, Trondheim, Norway, Aug 30–Sept 2, 2005. Very Large Data Bases. VLDB Endowment, pp 721–732

  • Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci USA 99(12): 7821–7826

    Article  MathSciNet  MATH  Google Scholar 

  • Gjoka M, Kurant M, Butts CT, Markopoulou A (2009) A walk in facebook: uniform sampling of users in online social networks. Eprint arXiv:0906.0060

    Google Scholar 

  • Gregory S (2009) Finding overlapping communities in networks by label propagation. Eprint arXiv: 0910.5516

  • Hastings MB (2006) Community detection as an inference problem. Phys Rev E 74: 035102

    Article  Google Scholar 

  • Hübler C, Kriegel H, Borgwardt K, Ghahramani Z (2008) Metropolis algorithms for representative subgraph sampling. In: Proceedings of the 2008 eighth IEEE international conference on data mining, Dec 15–19, 2008. ICDM. IEEE Computer Society, Washington, DC, pp 283–292

  • Hui P, Yoneki E, Chan SY, Crowcroft J (2007) Distributed community detection in delay tolerant networks. In: Proceedings of 2nd ACM/IEEE international workshop on mobility in the evolving internet architecture, MobiArch ’07. ACM, pp 1–8

  • Ino H, Kudo M, Nakamura A (2005) Partitioning of Web graphs by community topology. In: Proceedings of the 14th international conference on World Wide Web, Chiba, Japan 10–14 May 2005. WWW ’05. ACM, New York, pp 661–669

  • Java A, Joshi A, Finin T (2008a) Detecting communities via simultaneous clustering of graphs and folksonomies. In: Proceedings of WebKDD 2008, KDD workshop on web mining and web usage analysis, Las Vegas, NV

  • Java A, Joshi A, Finin T (2008b) Approximating the community structure of the long tail. In: Proceedings of the international conference on weblogs and social media

  • Kannan R, Vempala S, Vetta A (2004) On clusterings: good, bad and spectral. J ACM 51(3): 497–515

    Article  MathSciNet  MATH  Google Scholar 

  • Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J Sci Comput 20(1): 359–392

    Article  MathSciNet  Google Scholar 

  • Kim M, Han J (2009) A particle-and-density based evolutionary clustering method for dynamic networks. Proc VLDB Endow 2(1): 622–633

    Google Scholar 

  • Kovács IA, Palotai R, Szalay MS, Csermely P (2010) Community landscapes: an integrative approach to determine overlapping network module hierarchy, identify key nodes and predict network dynamics. PLoS ONE 5(9): e12528

    Article  Google Scholar 

  • Kumar R, Raghavan P, Rajagopalan S, Tomkins A (1999) Trawling the Web for emerging cyber-communities. Comput Netw 31(11–16): 1481–1493

    Article  Google Scholar 

  • Kumar SR, Raghavan P, Rajagopalan S, Sivakumar D, Tomkins A, Upfal E (2000) The web as a graph. In: ACM symposium on principles of database systems, Dallas, Texas

  • Lancichinetti A, Fortunato S (2009) Community detection algorithms: a comparative analysis. Phys Rev E 80: 056117

    Article  Google Scholar 

  • Lancichinetti A, Fortunato S, Radicchi F (2008) Benchmark graphs for testing community detection algorithms. Phys Rev E 78: 046110

    Article  Google Scholar 

  • Leskovec J, Faloutsos C (2006) Sampling from large graphs. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and data mining, Philadelphia, PA, USA, 20–23 Aug 2006. KDD ’06. ACM, New York, pp 631–636

  • Leskovec J, Lang K, Dasgupta A, Mahoney M (2008) Community structure in large networks: natural cluster sizes and the absence of large well-defined clusters. Eprint arXiv:0810.1355

    Google Scholar 

  • Leung IXY, Hui P, Lio P, Crowcroft J (2009) Towards real-time community detection in large networks. Phys Rev E 79: 066107

    Article  Google Scholar 

  • Li X, Wu C, Zach C, Lazebnik S, Frahm J (2008) Modeling and recognition of landmark image collections using iconic scene graphs. Lecture notes in computer science, vol 5302. Springer-Verlag, Berlin, pp 427–440

  • Lin Y, Sundaram H, Chi Y, Tatemura J, Tseng BL (2007) Blog community discovery and evolution based on mutual awareness expansion. In: Proceedings of the IEEE/WIC/ACM international conference on web intelligence. IEEE Computer Society, Washington, DC, pp 48–56

  • Lin Y, Chi Y, Zhu S, Sundaram H, Tseng BL (2008) Facetnet: a framework for analyzing communities and their evolutions in dynamic networks. In: Proceeding of the 17th international conference on World Wide Web, Beijing, China, 21–25 April 2008. WWW ’08. ACM, New York, pp 685–694

  • Lin Y, Sun J, Castro P, Konuru R, Sundaram H, Kelliher A (2009) MetaFac: community discovery via relational hypergraph factorization. In: Proceedings of KDD ’09. ACM, pp 527–536

  • Lorrain F, White H (1971) Structural equivalence of individuals in social networks. J Math Sociol 1: 49–80

    Article  Google Scholar 

  • Luo F, Wang JZ, Promislow E (2006) Exploring local community structures in large networks. In: Proceedings of web intelligence 2006. IEEE Computer Society, pp 233–239

  • Maiya AS, Berger-Wolf TY (2010) Sampling community structure. In: Proceedings of the 19th international conference on World Wide Web, Raleigh, North Carolina, USA, 26–30 April 2010. WWW ’10. ACM, New York, pp 701–710

  • Massen CP, Doye JPK (2005) Identifying “communities” within energy landscapes. Phys Rev E 71:046101

    Google Scholar 

  • Mika P (2005) Ontologies are us: a unified model of social networks and semantics. In: Proceedings of ISWC 2005. Springer, Berlin, pp 522–536

  • Moëllic P, Haugeard J, Pitel G (2008) Image clustering based on a shared nearest neighbors approach for tagged collections. In: Proceedings of CIVR ’08, Niagara Falls, Canada, 7–9 July. ACM, New York, pp 269–278

  • Newman MEJ (2004a) Fast algorithm for detecting community structure in networks. Phys Rev E 69: 066133

    Article  Google Scholar 

  • Newman MEJ (2004b) Analysis of weighted networks. Phys Rev E 70: 056131

    Article  Google Scholar 

  • Newman MEJ (2006) Finding community structure in networks using the eigenvectors of matrices. Phys Rev E 74:036104

    Google Scholar 

  • Newman MEJ, Girvan M (2004) Finding and evaluating community structure in networks. Phys Rev E 69: 026113

    Article  Google Scholar 

  • Palla G, Derenyi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043): 814–818

    Article  Google Scholar 

  • Palla G, Barabasi A-L, Vicsek T (2007) Quantifying social group evolution. Nature 446: 664–667

    Article  Google Scholar 

  • Papadopoulos S, Skusa A, Vakali A, Kompatsiaris Y, Wagner N (2009a) Bridge bounding: a local approach for efficient community discovery in complex networks. Eprint arXiv: 0902.0871

  • Papadopoulos S, Kompatsiaris Y, Vakali A (2009b) Leveraging collective intelligence through community detection in tag networks. In: Proceedings of CKCaR’09 workshop on collective knowledge capturing and representation, Redondo Beach, California, USA

  • Papadopoulos S, Kompatsiaris Y, Vakali A (2010a) A graph-based clustering scheme for identifying related tags in folksonomies. In: Proceedings of DaWaK’10, Bilbao, Spain. Springer-Verlag, pp 65–76

  • Papadopoulos S, Vakali A, Kompatsiaris Y (2010b) Community detection in collaborative tagging systems. In: Pardede E (ed) Book community-built database: research and development. Springer, New York

  • Papadopoulos S, Zigkolis C, Kompatsiaris Y, Vakali A (2010c) Cluster-based landmark and event detection on tagged photo collections. IEEE Multimed Mag 18(1): 52–63

    Article  Google Scholar 

  • Pons P, Latapy M (2005) Computing communities in large networks using random walks. Computer and Information Sciences—ISCIS 2005

  • Porter MA, Onnela JP, Mucha PJ (2009) Communities in networks. Not Am Math Soc 56(9): 1082–1097

    MathSciNet  MATH  Google Scholar 

  • Quack T, Leibe B, Van Gool L (2008) World-scale mining of objects and events from community photo collections. In: Proceedings of the 2008 international conference on content-based image and video retrieval, Niagara Falls, Canada, 07–09 July 2008. CIVR ’08. ACM, New York, pp 47–56

  • Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D (2004) Defining and identifying communities in networks. Proc Natl Acad Sci USA 101: 2658–2663

    Article  Google Scholar 

  • Raghavan UN, Albert R, Kumara S (2007) Near linear time algorithm to detect community structures in large-scale networks. Phys Rev E 76: 036106

    Article  Google Scholar 

  • Reichardt J, Bornholdt S (2006) Statistical mechanics of community detection. Phys Rev E 74: 016110

    Article  MathSciNet  Google Scholar 

  • Ribeiro-Neto B, Cristo M, Golgher PB, Silva de Moura E (2005) Impedance coupling in content-targeted advertising. In: Proceedings of the 28th annual international ACM SIGIR conference, Salvador, Brazil, 15–19 Aug. SIGIR ’05. ACM, New York, pp 496–503

  • Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks reveal community structure. Proc Natl Acad Sci USA 105: 1118–1123

    Article  Google Scholar 

  • Sayyadi H, Hurst M, Maykov A (2009) Event detection and tracking in social streams. In: Proceedings of international AAAI conference on weblogs and social media. AAAI Press

  • Schaeffer SE (2007) Graph clustering. Comput Sci Rev 1(1): 27–64

    Article  MathSciNet  Google Scholar 

  • Schlitter N, Falkowski T (2009) Mining the dynamics of music preferences from a social networking site. In: Proceedings of the international conference on advances in social network analysis and mining, Athens, Greece

  • Schmitz C, Hotho A, Jäschke R, Stumme G (2006) Mining association rules in folksonomies. In: Proceedings of the 10th IFCS conference on data science and classification, pp 261–270

  • Scott J (2000) Social network analysis: a handbook. Sage Publications Ltd, London

    Google Scholar 

  • Scripps J, Tan P, Esfahanian A (2007) Node roles and community structure in networks. In: Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on web mining and social network analysis, San Jose, CA, 12–12 Aug 2007. WebKDD/SNA-KDD ’07. ACM, New York, pp 26–35

  • Shi J, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach Intell 22(8): 888–905

    Article  Google Scholar 

  • Šíma J, Schaeffer SE (2006) On the NP-completeness of some graph cluster measures. In: Proceedings of SOFSEM 2006: theory and practice of computer science, pp 530–537

  • Simpson E (2008) Clustering tags in enterprise and web folksonomies. Technical report HPL-2008-18

  • Specia L, Motta E (2007) Integrating folksonomies with the semantic web. Lecture notes in computer science, vol 4519. Springer-Verlag, Berlin, pp 624–639

  • Sun J, Faloutsos C, Papadimitriou S, Yu PS (2007) GraphScope: parameter-free mining of large time-evolving graphs. In: Proceedings of KDD ’07. ACM, pp 687–696

  • Tang L, Liu H (2010) Graph mining applications to social network analysis. In: Aggarwal C, Wang H (eds) Managing and mining graph data. Springer, New York

    Google Scholar 

  • Tsatsou D, Papadopoulos S, Kompatsiaris I, Davis PC (2010) Distributed technologies for personalized advertisement delivery. In: Hua X–S, Mei T, Hanjalic A (eds) Online multimedia advertising: techniques and technologies. IGI Global, pp 233–261. http://www.igi-global.com/bookstore/chapter.aspx?titleid=51963

  • Tyler JR, Wilkinson DM, Huberman BA (2003) Email as spectroscopy: automated discovery of community structure within organizations. In: Huysman M, Wenger E, Wulf V (eds) Communities and technologies. Kluwer B.V., Deventer, pp 81–96

  • Van Dongen S (2000) Graph clustering by flow simulation. Ph.D. Thesis, Dutch National Research Institute for Mathematics and Computer Science, Utrecht, Netherlands

  • Von Luxburg U (2006) A tutorial on spectral clustering. Technical report 149. Max Planck Institute for Biological Cybernetics, August 2006

  • Vragović I, Louis E (2006) Network community structure and loop coefficient method. Phys Rev E 74: 016105

    Article  Google Scholar 

  • Wang Y, Wu B, Du N (2008) Community evolution of social network: feature, algorithm and model. Eprint arXiv: 0804.4356

  • Wasserman S, Faust K (1994) Social network analysis: methods and applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Xu X, Yuruk N, Feng Z, Schweiger TA (2007) SCAN: a structural clustering algorithm for networks. In: Proceedings of KDD ’07. ACM, pp 824–833

  • Yang B, Liu D-Y (2006) Force-based incremental algorithm for mining community structure in dynamic network. J Comput Sci Technol 21(3): 393–400

    Article  MATH  Google Scholar 

  • Yang S, Wang B, Zhao H, Wu B (2009) Efficient dense structure mining using MapReduce. In: Proceedings of international conference on data mining workshops, pp 332–337

  • Ye S, Lang J, Wu F (2010) Crawling online social graphs. In: Proceedings of 12th international Asia-Pacific web conference, APWeb 2010

  • Zakharov P (2006) Thermodynamic approach for community discovering within the complex networks: LiveJournal study. Eprint arXiv:physics/0602063

  • Zhang Y, Wang J, Wang Y, Zhou L (2009) Parallel community detection on large networks with propinquity dynamics. In: Proceedings of KDD ’09. ACM, pp 997–1006

  • Zhao Q, Mitra P, Chen B (2007) Temporal and information flow based event detection from social text streams. In: Proceedings of the 22nd national conference on artificial intelligence, Vancouver, BC, Canada, July 2007. AAAI Press, pp 1501–1506

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Symeon Papadopoulos.

Additional information

Responsible editor: Myra Spiliopoulou, Bamshad Mobasher, Olfa Nasraoui, Osmar Zaiane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papadopoulos, S., Kompatsiaris, Y., Vakali, A. et al. Community detection in Social Media. Data Min Knowl Disc 24, 515–554 (2012). https://doi.org/10.1007/s10618-011-0224-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10618-011-0224-z

Keywords

Navigation