Achlioptas D, McSherry F (2007) Fast computation of low-rank matrix approximations. J ACM 54(9): 1–19
MathSciNet
Google Scholar
Aguilar O, Huerta G, Prado R, West M (1998) Bayesian inference on latent structure in time series. In: Bernardo J, Bergen J, Dawid A, Smith A (eds) Bayesian statistics. Oxford University Press, Oxford
Google Scholar
Blumenthal LM (1953) Theory and applications of distance geometry. Oxford University Press, Oxford
MATH
Google Scholar
Chan B, Mitchell D, Cram L (2003) Archetypal analysis of galaxy spectra. Mon Not R Astron Soc 338(3): 790–795
Article
Google Scholar
Chang CI, Wu CC, Liu WM, Ouyang YC (2006) A new growing method for simplex-based endmember extraction algorithm. IEEE T Geosci Remote 44(10): 2804–2819
Article
Google Scholar
Crippen G (1988) Distance geometry and molecular conformation. Wiley, New York
MATH
Google Scholar
Cutler A, Breiman L (1994) Archetypal analysis. Technometrics 36(4): 338–347
Article
MATH
MathSciNet
Google Scholar
Dean J, Ghemawat S (2008) Mapreduce: simplified data processing on large clusters. Commun ACM 51(1): 107–113
Article
Google Scholar
Ding C, Li T, Jordan M (2010) Convex and semi-nonnegative matrix factorizations. IEEE T Pattern Anal 32(1): 45–55
Article
Google Scholar
Drineas P, Kannan R, Mahoney M (2006) Fast Monte Carlo algorithms III: computing a compressed approixmate matrix decomposition. SIAM J Comput 36(1): 184–206
Article
MATH
MathSciNet
Google Scholar
Faloutsos C, Lin KI (1995) FastMap: a fast algorithm for indexing, data-mining and visualization of traditional and multimedia datasets. In: Proceedings of the ACM SIGMOD international conference on management of data, San Diego
Foster D, Nascimento S, Amano K (2004) Information limits on neural identification of coloured surfaces in natural scenes. Visual Neurosci 21: 331–336
Article
Google Scholar
Gomes C (2009) Computational sustainability. The Bridge, National Academy of Engineering 39(4): 6–11
Google Scholar
Goreinov SA, Tyrtyshnikov EE (2001) The maximum-volume concept in approximation by low-rank matrices. Contemp Math 280: 47–51
MathSciNet
Google Scholar
Hotelling H (1933) Analysis of a complex of statistical variables into principal components. J Educ Psychol 24(7): 498–520
Article
Google Scholar
Kersting K, Wahabzada M, Thurau C, Bauckhage C (2010) Hierarchical convex NMF for clustering massive data. In: Proceedings of the 2nd Asian Conference on Machine Learning (ACML-10)
Lee DD, Seung HS (1999) Learning the parts of objects by non-negative matrix factorization. Nature 401(6755): 788–799
Article
Google Scholar
Lucas A, Klaassen P, Spreij P, Straetmans S (2003) Tail behaviour of credit loss distributions for general latent factor models. Appl Math Finance 10(4): 337–357
Article
MATH
Google Scholar
MacKay D (2009) Sustainable energy—without the hot air. UIT Cambridge Ltd, Cambridge
Google Scholar
Miao L, Qi H (2007) Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE T Geosci Remote 45(3): 765–777
Article
Google Scholar
Nascimento JMP, Dias JMB (2005) Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE T Geosci Remote 43(4): 898–910
Article
Google Scholar
Ostrouchov G, Samatova N (2005) On fastmap and the convex hull of multivariate data: toward fast and robust dimension reduction. IEEE T Pattern Anal 27(8): 1340–1434
Article
Google Scholar
Sippl M, Sheraga H (1986) Cayley-Menger coordinates. Proc Natl Acad Sci 83(8): 2283–2287
Article
MATH
Google Scholar
Spearman C (1904) General intelligence objectively determined and measured. Am J Psychol 15: 201–293
Article
Google Scholar
Thurau C, Kersting K, Bauckhage C (2009) Convex non-negative matrix factorization in the wild. In: Proceedings of the IEEE International Conference on Data Mining, Miami
Thurau C, Kersting K, Wahabzada M, Bauckhage C (2010) Convex non-negative matrix factorization for massive datasets. Knowl Inf Syst (KAIS). doi:10.1007/s10115-010-0352-6
Winter ME (1999) N-FINDR: an algorithm for fast and autonomous spectral endmember determination in hyperspectral data. In: Proceedings of the International Conference on Applied Geologic Remote Sensing, Vancouver