Skip to main content

New paradigm of FPGA-based computational intelligence from surveying the implementation of DNN accelerators


With the rapid development of Artificial Intelligence, Internet of Things, 5G, and other technologies, a number of emerging intelligent applications represented by image recognition, voice recognition, autonomous driving, and intelligent manufacturing have appeared. These applications require efficient and intelligent processing systems for massive data calculations, so it is urgent to apply better DNN in a faster way. Although, compared with GPU, FPGA has a higher energy efficiency ratio, and shorter development cycle and better flexibility than ASIC. However, FPGA is not a perfect hardware platform either for computational intelligence. This paper provides a survey of the latest acceleration work related to the familiar DNNs and proposes three new directions to break the bottleneck of the DNN implementation. So as to improve calculating speed and energy efficiency of edge devices, intelligent embedded approaches including model compression and optimized data movement of the entire system are most commonly used. With the gradual slowdown of Moore’s Law, the traditional Von Neumann Architecture generates a “Memory Wall” problem, resulting in more power-consuming. In-memory computation will be the right medicine in the post-Moore law era. More complete software/hardware co-design environment will direct researchers’ attention to explore deep learning algorithms and run the algorithm on the hardware level in a faster way. These new directions start a relatively new paradigm in computational intelligence, which have attracted substantial attention from the research community and demonstrated greater potential over traditional techniques.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18


  1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M (2016) Tensorflow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467

  2. Akin B, Franchetti F, Hoe JC (2015) Data reorganization in memory using 3D-stacked dram. ACM SIGARCH Comput Archit News 43(3S):131–143

    Article  Google Scholar 

  3. Beric A, van Meerbergen J, de Haan G, Sethuraman R (2008) Memory-centric video processing. IEEE Trans Circuits Syst Video Technol 18(4):439–452.

    Article  Google Scholar 

  4. Beyls K, D’Hollander EH (2009) Refactoring for data locality. Computer 42(2):62–71.

  5. Boo Y, Sung W (2017) Structured sparse ternary weight coding of deep neural networks for efficient hardware implementations. In: 2017 IEEE international workshop on signal processing systems (SIPS)

  6. Cadambi S, Durdanovic I, Jakkula V, Sankaradass M, Cosatto E, Chakradhar S, Graf HP (2009) A massively parallel FPGA-based coprocessor for support vector machines. In: Proceedings of the 2009 17th IEEE symposium on field programmable custom computing machines, pp 115–122.

  7. Chang J, Sha J (2019) Prune deep neural networks with the modified l-1/2 penalty. IEEE Access 7:2273–2280.

    Article  Google Scholar 

  8. Chang YJ, Tsai KL, Cheng YC (2020) Data retention based low leakage power TCAM for network packet routing. IEEE Trans Circuits Syst II Express Briefs 1.

  9. Chen G, Meng H, Liang Y, Huang K (2020) GPU-accelerated real-time stereo estimation with binary neural network. IEEE Trans Parallel Distrib Syst 31(12):2896–2907

    Article  Google Scholar 

  10. Chen T, Du Z, Sun N, Wang J, Wu C, Chen Y, Temam O (2014) Diannao: a small-footprint high-throughput accelerator for ubiquitous machine-learning. ACM SIGPLAN Not 49:269–284

    Article  Google Scholar 

  11. Chen Y, Chen T, Xu Z, Sun N, Temam O (2016) Diannao family. Commun ACM 59(11):105–112.

    Article  Google Scholar 

  12. Chen Y, Luo T, Liu S, Zhang S, He L, Wang J, Li L, Chen T, Xu Z, Sun N et al (2014) Dadiannao: a machine-learning supercomputer. In: Proceedings of the 47th annual IEEE/ACM international symposium on microarchitecture, pp 609–622. IEEE Computer Society

  13. Chen YH, Krishna T, Emer JS, Sze V (2017) Eyeriss: an energy-efficient reconfigurable accelerator for deep convolutional neural networks. IEEE J Solid-State Circuits 52(1):127–138.

    Article  Google Scholar 

  14. Cheng J, Wu J, Leng C, Wang Y, Hu Q (2018) Quantized CNN: a unified approach to accelerate and compress convolutional networks. IEEE Trans Neural Netw Learn Syst 29(10):4730–4743.

    Article  Google Scholar 

  15. Chi P, Li S, Xu C, Zhang T, Zhao J, Liu Y, Wang Y, Xie Y (2016) Prime: a novel processing-in-memory architecture for neural network computation in reram-based main memory. In: 2016 ACM/IEEE 43rd annual international symposium on computer architecture (ISCA), vol 3, pp 27–39. IEEE Press

  16. Cloutier J, Cosatto E, Pigeon S, Boyer FR, Simard PY (1996) VIP: an FPGA-based processor for image processing and neural networks. In: Proceedings of fifth international conference on microelectronics for neural networks, pp 330–336. IEEE

  17. Deng L, Li J, Huang JT, Yao K, Yu D, Seide F, Seltzer M, Zweig G, He X, Williams J (2013) Recent advances in deep learning for speech research at Microsoft. In: 2013 IEEE international conference on acoustics, speech and signal processing, pp 8604–8608. IEEE

  18. Dong H, Jiang L, Li TJ, Liang XY (2018) A systematic FPGA acceleration design for applications based on convolutional neural networks. In: Advances in materials, machinery, electronics II, vol 1955

  19. Du ZD, Fasthuber R, Chen TS, Ienne P, Li L, Luo T, Feng, XB, Chen YJ, Temam O (2015) Shidiannao: shifting vision processing closer to the sensor. In: 2015 ACM/IEEE 42nd annual international symposium on computer architecture (ISCA), pp 92–104.

  20. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118.

    Article  Google Scholar 

  21. Farabet C, Poulet C, Han JY, Lecun Y (2009) CNP: an FPGA-based processor for convolutional networks. In: FPL: 2009 international conference on field programmable logic and applications p 32.

  22. Farmahini-Farahani A, Ahn JH, Morrow K, Kim NS (2014) Drama: an architecture for accelerated processing near memory. IEEE Comput Archit Lett 14(1):26–29

    Article  Google Scholar 

  23. Finker R, del Campo I, Echanobe J, Doctor F (2013) Multilevel adaptive neural network architecture for implementing single-chip intelligent agents on FPGAs. In: 2013 international joint conference on neural networks (IJCNN)

  24. Foucher C, Muller F, Giulieri A (2012) Fast integration of hardware accelerators for dynamically reconfigurable architecture. In: 2012 7th international workshop on reconfigurable and communication-centric systems-on-chip (RECOSOC)

  25. Gao HB, Cheng B, Wang JQ, Li KQ, Zhao JH, Li DY (2018) Object classification using CNN-based fusion of vision and lidar in autonomous vehicle environment. IEEE Trans Ind Inform 14(9):4224–4231.

    Article  Google Scholar 

  26. Geng T, Wang T, Sanaullah A, Yang C, Patel R, Herbordt M (2018) A framework for acceleration of CNN training on deeply-pipelined FPGA clusters with work and weight load balancing. In: 2018 28th international conference on field programmable logic and applications (FPL), pp 394–3944

  27. Gokhale V, Jin J, Dundar A, Martini B, Culurciello E (2014) A 240 g-ops/s mobile coprocessor for deep neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops, pp 682–687

  28. Graves A, Mohamed AR, Hinton G (2013) Speech recognition with deep recurrent neural networks. In: 2013 IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 6645–6649

  29. Guo HN, Ren XD, Li SH (2018) A new pruning method to train deep neural networks. Commun Signal Process Syst 423:767–775.

    Article  Google Scholar 

  30. Guo K, Sui L, Qiu J, Yu J, Wang J, Yao S, Han S, Wang Y, Yang H (2018) Angel-eye: a complete design flow for mapping CNN onto embedded FPGA. IEEE Trans Comput Aided Des Integr Circuits Syst 37(1):35–47.

    Article  Google Scholar 

  31. Hajduk Z (2018) Reconfigurable FPGA implementation of neural networks. Neurocomputing 308:227–234.

    Article  Google Scholar 

  32. HajiRassouliha A, Taberner AJ, Nash MP, Nielsen PMF (2018) Suitability of recent hardware accelerators (DSPs, FPGAs, and GPUs) for computer vision and image processing algorithms. Signal Process Image Commun 68:101–119.

    Article  Google Scholar 

  33. Han S, Kang JL, Mao HZ, Hu YM, Li X, Li YB, Xie DL, Luo H, Yao S, Wang Y, Yang HZ, Dally WJ (2017) ESE: efficient speech recognition engine with sparse LSTM on FPGA. In: FPGA’17: proceedings of the 2017 ACM/SIGDA international symposium on field-programmable gate arrays, pp 75–84.

  34. Han S, Liu X, Mao H, Pu J, Pedram A, Horowitz M, Dally W (2016) EIE: efficient inference engine on compressed deep neural network. 2016 ACM/IEEE 43rd annual international symposium on computer architecture (ISCA). pp 243–254.

  35. Han S, Pool J, Tran J, Dally WJ (2015) Learning both weights and connections for efficient neural networks. In: Advances in neural information processing systems 28 (NIPS 2015), vol 28

  36. Hennessy JL, Patterson DA (2018) A new golden age for computer architecture: domain-specific hardware/software co-design, enhanced security, open instruction sets, and agile chip development. Turing lecture at international symposium on computer architecture (ISCA’18), Los Angles, USA

  37. Horowitz M (2014) Computing’s energy problem (and what we can do about it). In: 2014 IEEE international solid-state circuits conference digest of technical papers (ISSCC), vol 57, pp 10–14

  38. Hsien-De Huang T, Yu CM, Kao HY (2017) Data-driven and deep learning methodology for deceptive advertising and phone scams detection. In: 2017 conference on technologies and applications of artificial intelligence (TAAI), pp 166–171

  39. Irfan M, Ullah Z, Cheung RCC (2019) D-TCAM: a high-performance distributed RAM based TCAM architecture on FPGAs. IEEE Access 7:96060–96069

    Article  Google Scholar 

  40. Izeboudjen N, Larbes C, Farah A (2012) A new classification approach for neural networks hardware: from standards chips to embedded systems on chip. Artif Intell Rev 41(4):491–534.

    Article  Google Scholar 

  41. Jaki Z, Cadenelli N, Prats DB, Polo J, Perez DC (2019) A highly parameterizable framework for conditional restricted Boltzmann machine based workloads accelerated with FPGAs and OPENCL. Future Gener Comput Syst 104:201–211.

  42. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014) Caffe: convolutional architecture for fast feature embedding. In: MM 2014—proceedings of the 2014 ACM conference on multimedia

  43. Jiang W, Song Z, Zhan J, He Z, Jiang K (2020) Optimized co-scheduling of mixed-precision neural network accelerator for real-time multitasking applications. J Syst Archit 110:101775

    Article  Google Scholar 

  44. Jiang YG, Wu ZX, Wang J, Xue XY, Chang SF (2018) Exploiting feature and class relationships in video categorization with regularized deep neural networks. IEEE Trans Pattern Anal Mach Intell 40(2):352–364.

    Article  Google Scholar 

  45. Jiao L, Luo C, Cao W, Zhou X, Wang L (2017) Accelerating low bit-width convolutional neural networks with embedded FPGA. In: Santambrogio M, Gohringer D, Stroobandt D, Mentens N, Nurmi J (eds) 2017 27th international conference on field programmable logic and applications (FPL), pp 1–4

  46. Jouppi NP, Young C, Patil N, Patterson D, Agrawal G, Bajwa R, Bates S, Bhatia S, Boden N, Borchers A et al (2017) In-datacenter performance analysis of a tensor processing unit. In: 2017 ACM/IEEE 44th annual international symposium on computer architecture (ISCA), pp 1–12. IEEE

  47. Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural networks. Commun ACM 60(6):84–90.

    Article  Google Scholar 

  48. Kwon H, Samajdar A, Krishna T (2018) Maeri: enabling flexible dataflow mapping over DNN accelerators via programmable interconnects. In: Proceedings of the 23rd international conference on architectural support for programming languages and operating systems, pp 461–475

  49. Lebedev V, Lempitsky V (2016) Fast convnets using group-wise brain damage. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 2554–2564.

  50. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–44.

    Article  Google Scholar 

  51. LeCun Y, Denker JS, Solla SA (2000) Optimal brain damage. In: Advances in neural information processing systems, vol 2, pp 598–605

  52. Li HM, Fan XT, Jiao L, Cao W, Zhou XG, Wang LL (2016) A high performance FPGA-based accelerator for large-scale convolutional neural networks. In: 2016 26th international conference on field programmable logic and applications (FPL).

  53. Li LQ, Xu YH, Zhu J (2018) Filter level pruning based on similar feature extraction for convolutional neural networks. IEICE Trans Inf Syst E101d(4):1203–1206.

    Article  Google Scholar 

  54. Li X, Cai Y, Han J, Zeng X (2017) A high utilization FPGA-based accelerator for variable-scale convolutional neural network. In: 2017 IEEE 12th international conference on ASIC (ASICON), pp 944–947. IEEE

  55. Liang S, Yin S, Liu L, Luk W, Wei S (2018) FP-BNN: binarized neural network on FPGA. Neurocomputing 275:1072–1086.

    Article  Google Scholar 

  56. Liu W, Lin J, Wang Z (2020) A precision-scalable energy-efficient convolutional neural network accelerator. IEEE Trans Circuits Syst I Regul Pap PP(99):1–14

    Google Scholar 

  57. Lu HY, Wang M, Foroosh H, Tappen M, Penksy M (2015) Sparse convolutional neural networks. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR), pp 806–814

  58. Luo T, Liu S, Li L, Wang Y, Zhang S, Chen T, Xu Z, Temam O, Chen Y (2017) Dadiannao: a neural network supercomputer. IEEE Trans Comput 66(1):73–88.

    MathSciNet  Article  Google Scholar 

  59. Luo X, Shen R, Hu J, Deng J, Hu L, Guan Q (2017) A deep convolution neural network model for vehicle recognition and face recognition. Proc Comput Sci 107:715–720.

    Article  Google Scholar 

  60. Ma RR, Niu LF (2018) A survey of sparse-learning methods for deep neural networks. In: 2018 IEEE/WIC/ACM international conference on web intelligence (WI 2018), pp 647–650.

  61. Ma Y, Cao Y, Vrudhula S, Seo J (2018) Optimizing the convolution operation to accelerate deep neural networks on FPGA. IEEE Trans Very Large Scale Integr (VLSI) Syst 26(7):1354–1367.

    Article  Google Scholar 

  62. Ma YF, Cao Y, Vrudhula S, Seo JS (2017) Optimizing loop operation and dataflow in FPGA acceleration of deep convolutional neural networks. In: FPGA’17: proceedings of the 2017 ACM/SIGDA international symposium on field-programmable gate arrays, pp 45–54.

  63. Mair J, Huang ZY, Eyers D, Chen YW (2015) Quantifying the energy efficiency challenges of achieving exascale computing. In: 2015 15th IEEE/ACM international symposium on cluster, cloud and grid computing, pp 943–950.

  64. Marwa GAM, Mohamed B, Najoua C, Hedi BM (2017) Parallelism hardware computation for artificial neural network. In: 2017 IEEE/ACS 14th international conference on computer systems and applications (AICCSA), pp 1049–1055.

  65. Meiners CR, Liu AX, Torng E (2007) TCAM razor: a systematic approach towards minimizing packet classifiers in TCAMs. In: 2007 IEEE international conference on network protocols, pp 266–275

  66. Meloni P, Capotondi A, Deriu G, Brian M, Conti F, Rossi D, Raffo L, Benini L (2018) Neuraghe:exploiting CPU-FPGA synergies for efficient and flexible CNN inference acceleration on ZYNQ SOCS.ACM Trans Reconfig Technol Syst 11(3).

  67. Misra J, Saha I (2010) Artificial neural networks in hardware a survey of two decades of progress. Neurocomputing 74(1–3):239–255.

    Article  Google Scholar 

  68. Motamedi M, Gysel P, Akella V, Ghiasi S (2016) Design space exploration of FPGA-based deep convolutional neural networks. In: 2016 21st Asia and South Pacific design automation conference (ASP-DAC), pp 575–580

  69. Nabavinejad Morteza S (2020) An overview of efficient interconnection networks for deep neural network accelerators. IEEE J Emerg Sel Top Circuits Syst 10(3):268–282.

  70. Nakahara H, Fujii T, Sato S (2017) A fully connected layer elimination for a binarizec convolutional neural network on an fpga. In: 2017 27th international conference on field programmable logic and applications (FPL), pp 1–4. IEEE

  71. Norige E, Liu AX, Torng E (2018) A ternary unification framework for optimizing TCAM-based packet classification systems. IEEE/ACM Trans Netw 26(2):657–670

    Article  Google Scholar 

  72. Nurvitadhi E, Sheffield D, Sim J, Mishra A, Venkatesh G, Marr D (2016) Accelerating binarized neural networks: comparison of FPGA, CPU, GPU, and ASIC. In: 2016 international conference on field-programmable technology (FPT), pp 77–84. IEEE

  73. Peemen M, Setio AA, Mesman B, Corporaal H (2013) Memory-centric accelerator design for convolutional neural networks. In: 2013 IEEE 31st international conference on computer design (ICCD), pp 13–19. IEEE

  74. Podili A, Zhang C, Prasanna V (2017) Fast and efficient implementation of convolutional neural networks on FPGA. In: 2017 IEEE 28th international conference on application-specific systems, architectures and processors (ASAP), pp 11–18

  75. Posewsky T, Ziener D (2018) Throughput optimizations for FPGA-based deep neural network inference. Microprocess Microsyst 60:151–161.

    Article  Google Scholar 

  76. Qiu JT, Wang J, Yao S, Guo KY, Li BX, Zhou EJ, Yu JC, Tang TQ, Xu NY, Song S, Wang Y, Yang HZ (2016) Going deeper with embedded FPGA platform for convolutional neural network. In: Proceedings of the 2016 ACM/SIGDA international symposium on field-programmable gate arrays (FPGA’16), pp 26–35.

  77. Rahman A, Lee J, Choi K (2016) Efficient FPGA acceleration of convolutional neural networks using logical-3D compute array. In: Proceedings of the 2016 design, automation & test in Europe conference & exhibition (date), pp 1393–1398

  78. Scanlan AG (2019) Low power & mobile hardware accelerators for deep convolutional neural networks. Integration 65:110–127.

    Article  Google Scholar 

  79. Shafiee A, Nag A, Muralimanohar N, Balasubramonian R, Strachan JP, Hu M, Williams RS, Srikumar V (2016) Isaac: a convolutional neural network accelerator with in-situ analog arithmetic in crossbars. ACM SIGARCH Comput Archit News 44(3):14–26

    Article  Google Scholar 

  80. Shin D, Lee J, Lee J, Lee J, Yoo HJ (2018) Dnpu: an energy-efficient deep-learning processor with heterogeneous multi-core architecture. IEEE Micro 38(5):85–93

    Article  Google Scholar 

  81. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556

  82. Song L, Qian X, Li H, Chen Y (2017) Pipelayer: a pipelined reram-based accelerator for deep learning. In: 2017 IEEE international symposium on high performance computer architecture (HPCA), pp 541–552. IEEE

  83. Srinivas S, Babu RV (2015) Data-free parameter pruning for deep neural networks. arXiv preprint arXiv:1507.06149

  84. Vansteenkiste E, Al Farisi B, Bruneel K, Stroobandt D (2014) Tpar: place and route tools for the dynamic reconfiguration of the FPGA’s interconnect network. IEEE Trans Comput Aided Des Integr Circuits Syst 33(3):370–383.

  85. Waldrop MM (2016) The chips are down for Moore’s law. Nat News 530(7589):144

  86. Wang JS, Lou QW, Zhang XF, Zhu C, Lin YH, Chen DM (2018) Design flow of accelerating hybrid extremely low bit-width neural network in embedded FPGA. In: 2018 28th international conference on field programmable logic and applications (FPL), pp 163–169.

  87. Wang Y, Xu J, Han YH, Li HW, Li XW (2016) Deepburning: automatic generation of FPGA-based learning accelerators for the neural network family. In: 2016 ACM/EDAC/IEEE design automation conference (DAC).

  88. Xia LX, Li BX, Tang TQ, Gu P, Chen PY, Yu SM, Cao Y, Wang Y, Xie Y, Yang HZ (2018) Mnsim: simulation platform for memristor-based neuromorphic computing system. IEEE Trans Comput Aided Des Integr Circuits Syst 37(5):1009–1022.

    Article  Google Scholar 

  89. Xiao QC, Liang Y, Lu LQ, Yan SG, Tai YW (2017) Exploring heterogeneous algorithms for accelerating deep convolutional neural networks on FPGAs. In: Proceedings of the 2017 54th ACM/EDAC/IEEE design automation conference (DAC).

  90. Yin L, Cheng R, Yao W, Liu C, He J (2021) Emerging 2D memory devices for in-memory computing. Adv Mater 33.

  91. Yu NG, Qiu S, Hu XL, Li JM (2017) Accelerating convolutional neural networks by group-wise 2D-filter pruning. In: 2017 international joint conference on neural networks (IJCNN), pp 2502–2509

  92. Yu S, Jia S, Xu C (2017) Convolutional neural networks for hyperspectral image classification. Neurocomputing 219:88–98.

    Article  Google Scholar 

  93. Zhan C, Fang ZM, Zhou PP, Pan PC, Cong J (2016) Caffeine: towards uniformed representation and acceleration for deep convolutional neural networks. In: 2016 IEEE/ACM international conference on computer-aided design (ICCAD).

  94. Zhang C, Li P, Sun G, Guan Y, Xiao B, Cong J (2015) Optimizing FPGA-based accelerator design for deep convolutional neural networks. In: Proceedings of the 2015 ACM/SIGDA international symposium on field-programmable gate arrays, pp 161–170. ACM

  95. Zhang C, Prasanna V (2017) Frequency domain acceleration of convolutional neural networks on CPU-FPGA shared memory system. In: FPGA’17: proceedings of the 2017 ACM/SIGDA international symposium on field-programmable gate arrays, pp 35–44.

  96. Zhang M, Li LP, Wang H, Liu Y, Qin HB, Zhao W (2019) Optimized compression for implementing convolutional neural networks on FPGA. Electronics 8(3).

  97. Zhang SJ, Du ZD, Zhang L, Lan HY, Liu SL, Li L, Guo Q, Chen TS, Chen YJ (2016) Cambricon-x: an accelerator for sparse neural networks. In: 2016 49th annual IEEE/ACM international symposium on microarchitecture (Micro)

  98. Zhou S, Guo Q, Du Z, Liu D, Chen T, Li L, Liu S, Zhou J, Teman O, Feng X, Zhou X, Chen Y (2019) Paraml: a polyvalent multi-core accelerator for machine learning. IEEE Trans Comput Aided Des Integr Circuits Syst 39(9):1764–1777.

  99. Zhou X, Zhang J, Wan J, Zhou L, Wei Z, Zhang J (2019) Scheduling-efficient framework for neural network on heterogeneous distributed systems and mobile edge computing systems. IEEE Access 7:171853–171863

    Article  Google Scholar 

  100. Zhou XC, Li SL, Tang F, Hu SD, Lin Z, Zhang L (2018) Danoc: an efficient algorithm and hardware codesign of deep neural networks on chip. IEEE Trans Neural Netw Learn Syst 29(7):3176–3187.

    Article  Google Scholar 

  101. Zuo W, Liang Y, Li P, Rupnow K, Chen D, Cong J (2013) Improving high level synthesis optimization opportunity through polyhedral transformations. In: Proceedings of the ACM/SIGDA international symposium on field programmable gate arrays, pp 9–18. ACM

Download references


This work was supported in part by the National Natural Science Foundation of China under Grant 61836010.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Donghui Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

You, Y., Chang, Y., Wu, W. et al. New paradigm of FPGA-based computational intelligence from surveying the implementation of DNN accelerators. Des Autom Embed Syst 26, 1–27 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • DNN accelerators
  • Field programmable gate array (FPGA)
  • Embedded implementation
  • In-memory computation
  • Software/hardware co-design