Skip to main content
Log in

A novel input data transition aware dynamic voltage scaling based low power MAC architecture for DSP applications

  • Published:
Design Automation for Embedded Systems Aims and scope Submit manuscript

Abstract

A novel input transition aware dynamic voltage scaling based low power 8 bit Multiplier–Accumulator (MAC) architecture for Digital Signal Processing (DSP) has been presented in this paper. MAC is one of the main modules used in the various DSP applications like filtering, convolution and so on. The proposed input data transition aware dynamic voltage scaling is very effective method to minimize the dynamic power consumption without degrading the performance of the system. The input data transition detector circuit in the proposed low power MAC detects the transition and applies the dynamic voltage scaling adaptively so that the dynamic power is reduced to greater extent. The dynamic power consumed by the conventional MAC is 662.59 mW when all inputs are switching and it is only 475.75 mW for the proposed MAC with the same conditions. The proposed MAC consumes 28.19% less power than the conventional MAC for the same set of inputs and simulation environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rangachari S, Balakrishnan J, Chandrachoodan N (2016) Scenario-aware dynamic power reduction using bias addition. IEEE Trans VLSI Syst 25:450–461. Available online: http://ieeexplore.ieee.org. Accessed 08 Mar 2017

  2. Addanki Purna Ramesh SS, Tilak AVN Dr, Prasad AM Dr (2016) Efficient implementation of 16-bit multiplier–accumulator using radix-2 modified booth algorithm and SPST adder using verilog. Int J VLSI Des Commun Syst (VLSICS) 3:107–118. doi:10.5121/vlsic.2012.3310. Available online: http://aircconline.com/vlsics/V3N3/3312vlsics10.pdf. Accessed 08 Mar 2017

  3. Narendra CP, Ravi Kumar KM (2015) Low power compressor based MAC architecture for DSP applications. In: IEEE international conference on signal processing, informatics, communication and energy systems (SPICES) pp 1–5. doi:10.1109/SPICES.2015.7091393. Available online: http://ieeexplore.ieee.org. Accessed 08 Mar 2017

  4. Kanade SS, Padmanabh D, Deshpande SPAA (2015) Aware multiplier accumulation unit for error tolerant digital image processing application. Int J Sci Eng Res 6:569–578. Available online: http://www.ijser.org. Accessed 08 Mar 2017

  5. Anitha1 R, Deshmukh N, Agarwal P, Sahoo SK, Karthikeyan SP, Reglend IJ (2015) A 32 BIT MAC unit design using vedic multiplier and reversible logic gate. In: International conference on circuit, power and computing technologies [ICCPCT]. pp 1–6. doi:10.1109/ICCPCT.2015.7159505. Available online: http://ieeexplore.ieee.org. Accessed 08 Mar 2017

  6. Narendra CP, Ravi Kumar KM Dr (2014) Low power MAC architecture for DSP applications. In: Proceedings of international conference on circuits, communication, control and computing (I4C 2014). pp 404–407. doi:10.1109/CIMCA.2014.7057832. Available online: http://ieeexplore.ieee.org. Accessed 08 Mar 2017

  7. Varaprasad KN, Sarwade N Dr, Krishna CM (2013) Low power multiplier–accumulator. Int J Emerg Trends Electr Electron (IJETEE) 2:84–88. Available online: www.iret.co.in/Docs/.../Issue2/17.%20Low%20Power%20Multiplier-Accumulator.pdf. Accessed 08 Mar 2017

  8. Kumar R, Pattanaik M (2015) A novel dual multiplier floating point multiply accumulate architecture. In: 19th international symposium on VLSI design and test 1–2. doi:10.1109/ISVDAT.2015.7208061. Available online: http://ieeexplore.ieee.org. Accessed 08 Mar 2017

  9. Shanavaj S, Sekhar MC (2015) Razor based dynamic voltage scaling multiplier with 32 \(\times \) 32 multi precision. Int J Sci Eng Technol Res 4:8334–8337. Available online: www.ijsetr.com. Accessed 08 Mar 2017

  10. Geng T, Waeijen L, Peemen M, Corporaal H, He Y (2016) MacSim: a MAC-enabled high-performance low-power SIMD architecture. In: Euromicro conference on digital system design 1:160–164. doi:10.1109/DSD.2016.27. Available online: http://ieeexplore.ieee.org/document/7723549/. Accessed 08 Mar 2017

  11. Zhang X, Boussaid F, Bermak A (2013) 32 Bit \(\times \) 32 bit multiprecision razor-based dynamic voltage scaling multiplier with operands scheduler. IEEE Trans Very Large Scale Integr (VLSI) Syst 22:759–770. doi:10.1109/TVLSI.2013.2252032. Available online: http://ieeexplore.ieee.org. Accessed 08 Mar 2017

  12. Subbi Reddy TV, Nirmala Bai J (2013) 16-Bit high speed modified booth multiplier for signed and unsigned numbers. Int J New Trends Electron Commun (IJNTEC) 1:1–5. Available online: www.iret.co.in. Accessed 08 Mar 2017

  13. Kumar G, Sahoo SK (2015) Implementation of a high speed multiplier for high-performanceand low power applications. In: 19th international symposium on VLSI design and test 12:1–4. Available online: http://ieeexplore.ieee.org/document/7208143/. Accessed 08 Mar 2017

  14. Zendegani R, Kamal M, Bahadori M, Afzali-Kusha A, Pedram M (2016) RoBA multiplier: a rounding-based approximate multiplier for high-speed yet energy-efficient digital signal processing. IEEE Trans Very Large Scale Integr (VLSI) Syst 25:393–401. doi:10.1109/TVLSI.2016.2587696. Available online: http://ieeexplore.ieee.org. Accessed 08 Mar 2017

  15. Saeid G, Jaberipur G (2016) Sign-magnitude encoding for efficient VLSI realization of decimal multiplication. IEEE Trans Very Large Scale Integr (VLSI) Syst 25:75–86. doi:10.1109/TVLSI.2016.2579667. Available online: http://ieeexplore.ieee.org. Accessed 08 Mar 2017

  16. Yan W, Ercegovac MD, Chen H (2016) An energy-efficient multiplier with fully overlapped partial products reduction and final addition. In: IEEE transactions on circuits and systems I: regular papers vol 63. pp 1954–1963. doi:10.1109/TCSI.2016.2600159. Available online: http://ieeexplore.ieee.org. Accessed 08 Mar 2017

  17. Chanda M, Basak J, Sinha D, Ganguli T, Sarkar CK (2016) Design and implementation of adiabatic multiplier in sub-threshold regime for ultra low power application. In: International conference on communication and signal processing vol 12. pp 1927–1931. doi:10.1109/ICCSP.2016.7754507. Available online: http://ieeexplore.ieee.org. Accessed on 08 Mar 2017

  18. Vaidya RS, Ingale VA, Phad A, Shingare P (2016) Implementation of a high speed low power DSP co-processor based on clock gating and vedic mathematics. In: International conference on communication and signal processing. pp 0836-0839. doi:10.1109/ICCSP.2016.7754263. Available online: http://ieeexplore.ieee.org. Accessed 08 Mar 2017

  19. Mathew K, Latha SA, Ravi T, Logashanmugam E (2013) Design and analysis of an array multiplier using an area efficient full adder cell in 32 nm CMOS technology. Int J Eng Sci 2:8–16. Available online: http://www.theijes.com. Accessed 08 Mar 2017

  20. Zhai B, Blaauw D, Sylvester D, Flautner K (2005) The limit of dynamic voltage scaling and insomniac dynamic voltage scaling. IEEE Trans Very Large Scale Integr (VLSI) Syst 13:1239–1252. doi:10.1109/TVLSI.2005.859588. Available online: http://ieeexplore.ieee.org. Accessed 08 Mar 2017

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Haripriya.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haripriya, D., Govindaraju, C. & Sumathi, M. A novel input data transition aware dynamic voltage scaling based low power MAC architecture for DSP applications. Des Autom Embed Syst 21, 265–281 (2017). https://doi.org/10.1007/s10617-017-9186-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10617-017-9186-8

Keywords

Navigation