Abassi YA, Vuori K (2002) Tyrosine 221 in Crk regulates adhesion-dependent membrane localization of Crk and Rac and activation of Rac signaling. EMBO J 21:4571–4582. https://doi.org/10.1093/emboj/cdf446
CAS
Article
PubMed
PubMed Central
Google Scholar
Burotto M, Chiou VL, Lee JM, Kohn EC (2014) The MAPK pathway across different malignancies: a new perspective. Cancer 120:3446–3456. https://doi.org/10.1002/cncr.28864
CAS
Article
PubMed
Google Scholar
Chen L, Zheng L, Jiang J, Gui J, Zhang L, Huang Y, Chen X, Ji J, Fan Y (2016) Calcium hydroxide-induced proliferation, migration, osteogenic differentiation, and mineralization via the mitogen-activated protein kinase pathway in human dental pulp stem cells. J Endod 42:1355–1361. https://doi.org/10.1016/j.joen.2016.04.025
Article
PubMed
Google Scholar
Cui D, Xiao J, Zhou Y, Zhou X, Liu Y, Peng Y, Yu Y, Li H, Zhou X, Yuan Q, Wan M, Zheng L (2019) Epiregulin enhances odontoblastic differentiation of dental pulp stem cells via activating MAPK signalling pathway. Cell Prolif 52:e12680. https://doi.org/10.1111/cpr.12680
Article
PubMed
PubMed Central
Google Scholar
Filippi M, Dasen B, Guerrero J, Garello F, Isu G, Born G, Ehrbar M, Martin I, Scherberich A (2019) Magnetic nanocomposite hydrogels and static magnetic field stimulate the osteoblastic and vasculogenic profile of adipose-derived cells. Biomaterials 223:119468. https://doi.org/10.1016/j.biomaterials.2019.119468
CAS
Article
PubMed
Google Scholar
Glading A, Bodnar RJ, Reynolds IJ, Shiraha H, Satish L, Potter DA, Blair HC, Wells A (2004) Epidermal growth factor activates m-calpain (calpain II), at least in part, by extracellular signal-regulated kinase-mediated phosphorylation. Mol Cell Biol 24:2499–2512. https://doi.org/10.1128/mcb.24.6.2499-2512.2004
CAS
Article
PubMed
PubMed Central
Google Scholar
Goldschmidt ME, McLeod KJ, Taylor WR (2001) Integrin-mediated mechanotransduction in vascular smooth muscle cells: frequency and force response characteristics. Circ Res 88:674–680. https://doi.org/10.1161/hh0701.089749
CAS
Article
PubMed
Google Scholar
Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625–13630. https://doi.org/10.1073/pnas.240309797
CAS
Article
PubMed
PubMed Central
Google Scholar
Guo Y, Li D, Zhang S, Yang Y, Liu JJ, Wang X, Liu C, Milkie DE, Moore RP, Tulu US, Kiehart DP, Hu J, Lippincott-Schwartz J, Betzig E, Li D (2018) Visualizing intracellular organelle and cytoskeletal interactions at nanoscale resolution on millisecond timescales. Cell 175:1430–1442. https://doi.org/10.1016/j.cell.2018.09.057
CAS
Article
PubMed
Google Scholar
Hauck CR, Sieg DJ, Hsia DA, Loftus JC, Gaarde WA, Monia BP, Schlaepfer DD (2001) Inhibition of focal adhesion kinase expression or activity disrupts epidermal growth factor-stimulated signaling promoting the migration of invasive human carcinoma cells. Cancer Res 61:7079–7090
CAS
PubMed
Google Scholar
Hsu SH, Chang JC (2010) The static magnetic field accelerates the osteogenic differentiation and mineralization of dental pulp cells. Cytotechnology 62:143–155. https://doi.org/10.1007/s10616-010-9271-3
Article
PubMed
PubMed Central
Google Scholar
Huang C, Jacobson K, Schaller MD (2004) MAP kinases and cell migration. J Cell Sci 117:4619–4628. https://doi.org/10.1242/jcs.01481
CAS
Article
PubMed
Google Scholar
Hunger-Glaser I, Salazar EP, Sinnett-Smith J, Rozengurt E (2003) Bombesin, lysophosphatidic acid, and epidermal growth factor rapidly stimulate focal adhesion kinase phosphorylation at Ser-910: requirement for ERK activation. J Biol Chem 278:22631–22643. https://doi.org/10.1074/jbc.M210876200
CAS
Article
PubMed
Google Scholar
Johnson GL, Lapadat R (2002) Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 298:1911–1912. https://doi.org/10.1126/science.1072682
CAS
Article
PubMed
Google Scholar
Kim EC, Park J, Kwon IK, Lee SW, Park SJ, Ahn SJ (2017) Static magnetic fields promote osteoblastic/cementoblastic differentiation in osteoblasts, cementoblasts, and periodontal ligament cells. J Periodontal Implant Sci 47:273–291. https://doi.org/10.5051/jpis.2017.47.5.273
CAS
Article
PubMed
PubMed Central
Google Scholar
Kuwajima Y, Ishida Y, Lee C, Mayama H, Satoh K, Ishikawa-Nagai S (2019) 3D digital analysis of magnetic force-driven orthodontic tooth movement. Heliyon 5:e02861. https://doi.org/10.1016/j.heliyon.2019.e02861
Article
PubMed
PubMed Central
Google Scholar
Lew WZ, Huang YC, Huang KY, Lin CT, Tsai MT, Huang HM (2018) Static magnetic fields enhance dental pulp stem cell proliferation by activating the p38 mitogen-activated protein kinase pathway as its putative mechanism. J Tissue Eng Regen Med 12:19–29. https://doi.org/10.1002/term.2333
CAS
Article
PubMed
Google Scholar
Lew WZ, Feng SW, Lee SY, Huang HM (2021) The review of bioeffects of static magnetic fields on the oral tissue-derived cells and its application in regenerative medicine. Cells. https://doi.org/10.3390/cells10102662
Article
PubMed
PubMed Central
Google Scholar
Maredziak M, Tomaszewski K, Polinceusz P, Lewandowski D, Marycz K (2017) Static magnetic field enhances the viability and proliferation rate of adipose tissue-derived mesenchymal stem cells potentially through activation of the phosphoinositide 3-kinase/Akt (PI3K/Akt) pathway. Electromagn Biol Med 36:45–54. https://doi.org/10.3109/15368378.2016.1149860
CAS
Article
PubMed
Google Scholar
Tatullo M, Marrelli M, Shakesheff KM, White LJ (2015) Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med 9:1205–1216. https://doi.org/10.1002/term.1899
Article
PubMed
Google Scholar
Thompson IM (1964) Magnetism as an aid to a prosthetic problem. Br J Oral Surg 2:44–46. https://doi.org/10.1016/s0007-117x(64)80008-1
CAS
Article
PubMed
Google Scholar
Thouverey C, Malinowska A, Balcerzak M, Strzelecka-Kiliszek A, Buchet R, Dadlez M, Pikula S (2011) Proteomic characterization of biogenesis and functions of matrix vesicles released from mineralizing human osteoblast-like cells. J Proteomics 74:1123–1134. https://doi.org/10.1016/j.jprot.2011.04.005
CAS
Article
PubMed
Google Scholar
Xiao N, Yu WY, Liu D (2018) Glial cell-derived neurotrophic factor promotes dental pulp stem cell migration. J Tissue Eng Regen Med 12:705–714. https://doi.org/10.1002/term.2490
CAS
Article
PubMed
Google Scholar
Xu C, Fan Z, Chao YL, Du L, Zhang FQ (2008) Magnetic fields of 10mT and 120mT change cell shape and structure of F-actins of periodontal ligament cells. Bioelectrochemistry 72:41–46. https://doi.org/10.1016/j.bioelechem.2007.11.009
CAS
Article
PubMed
Google Scholar
Yamamoto Y, Ohsaki Y, Goto T, Nakasima A, Iijima T (2003) Effects of static magnetic fields on bone formation in rat osteoblast cultures. J Dent Res 82:962–966. https://doi.org/10.1177/154405910308201205
CAS
Article
PubMed
Google Scholar
Yang JC, Lee SY, Chen CA, Lin CT, Chen CC, Huang HM (2010) The role of the calmodulin-dependent pathway in static magnetic field-induced mechanotransduction. Bioelectromagnetics 31:255–261. https://doi.org/10.1002/bem.20559
CAS
Article
PubMed
Google Scholar
Zheng L, Chen L, Chen Y, Gui J, Li Q, Huang Y, Liu M, Jia X, Song W, Ji J, Gong X, Shi R, Fan Y (2016) The effects of fluid shear stress on proliferation and osteogenesis of human periodontal ligament cells. J Biomech 49:572–579. https://doi.org/10.1016/j.jbiomech.2016.01.034
Article
PubMed
Google Scholar
Zheng L, Zhang L, Chen L, Jiang J, Zhou X, Wang M, Fan Y (2018) Static magnetic field regulates proliferation, migration, differentiation, and YAP/TAZ activation of human dental pulp stem cells. J Tissue Eng Regen Med 12:2029–2040. https://doi.org/10.1002/term.2737
CAS
Article
PubMed
Google Scholar
Zhong TY, Zhang ZC, Gao YN, Lu Z, Qiao H, Zhou H, Liu Y (2019) Loss of Wnt4 expression inhibits the odontogenic potential of dental pulp stem cells through JNK signaling in pulpitis. Am J Transl Res 11:1819–1826
CAS
PubMed
PubMed Central
Google Scholar