Skip to main content

TLR agonist rMBP-NAP inhibits B16 melanoma tumor growth via induction of DCs maturation and T-cells cytotoxic response

Abstract

Melanoma is the most aggressive skin cancer with increasing incidence and poor prognosis all over the world. Recent research has found that immunological abnormalities played a key role in the pathogenesis of melanoma. Increased understanding of tumor immune mechanisms has led to attract more attention for the potential of TLR agonists on treatment of melanoma. The present study aimed to determine the potential and efficacy of a novel TLR agonist rMBP-NAP for antitumor treatment in murine model of B16 melanoma. Subcutaneous administration of mice with rMBP-NAP remarkably inhibited tumor growth and tumor inhibitory rate was 77.72%. Additionally, rMBP‑NAP significantly upregulated the number of mature DCs (P < 0.05). Furthermore, the number and activation of CD4+ and CD8+ T cells were prominently enhanced following rMBP-NAP stimulation (P < 0.05). Overall, these results demonstrated that rMBP-NAP possessed the potential to be a novel immunomodulatory candidate drug for treating melanoma.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data and materials availability

All data generated or analyzed during this study are included in this published article.

References

  • Agarwala SS, Neuberg D, Park Y, Kirkwood JM (2004) Mature results of a phase III randomized trial of bacillus Calmette-Guerin (BCG) versus observation and BCG plus dacarbazine versus BCG in the adjuvant therapy of American Joint Committee on Cancer Stage I-III melanoma (E1673): a trial of the Eastern Oncology Group. Cancer 100:1692–1698

    CAS  Article  Google Scholar 

  • Aranda F, Vacchelli E, Obrist F, Eggermont A, Galon J, Sautes-Fridman C, Cremer I, Henrik Ter Meulen J, Zitvogel L et al (2014) Trial watch: toll-like receptor agonists in oncological indications. Oncoimmunology 3:e29179

    Article  Google Scholar 

  • Benvenuti F (2016) The dendritic cell synapse: a life dedicated to T cell activation. Front Immunol 7:70

    Article  Google Scholar 

  • Chang LS, Leng CH, Yeh YC, Wu CC, Chen HW, Huang HM, Liu SJ (2014) Toll-like receptor 9 agonist enhances anti-tumor immunity and inhibits tumor-associated immunosuppressive cells numbers in a mouse cervical cancer model following recombinant lipoprotein therapy. Mol Cancer 13:60

    Article  Google Scholar 

  • Fernandez S, Palmer DR, Simmons M, Sun P, Bisbing J, McClain S, Mani S, Burgess T, Gunther V, Sun W (2007) Potential role for Toll-like receptor 4 in mediating Escherichia coli maltose-binding protein activation of dendritic cells. Infect Immun 75:1359–1363

    CAS  Article  Google Scholar 

  • Franklin C, Livingstone E, Roesch A, Schilling B, Schadendorf D (2017) Immunotherapy in melanoma: Recent advances and future directions. Eur J Surg Oncol 43:604–611

    CAS  Article  Google Scholar 

  • Fu HW (2014) Helicobacter pylori neutrophil-activating protein: From molecular pathogenesis to clinical applications. World J Gastroenterol 20:5294–5301

    Article  Google Scholar 

  • Gajewski TF, Schreiber H, Fu YX (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14:1014–1022

    CAS  Article  Google Scholar 

  • Hong X, Dong T, Hu J, Yi T, Li W, Zhang Z, Lin S, Niu W (2013) Synergistical toll-like receptors activated dendritic cells induce antitumor effects against carcinoembryonic antigen-expressing colon cancer. Int J Colorectal Dis 28:25–33

    Article  Google Scholar 

  • Huen AO, Rook AH (2014) Toll receptor agonist therapy of skin cancer and cutaneous T-cell lymphoma. Curr Opin Oncol 26:237–244

    CAS  Article  Google Scholar 

  • Iribarren K, Bloy N, Buque A, Cremer I, Eggermont A, Fridman WH, Fucikova J, Galon J, Spisek R et al (2016) Trial Watch: Immunostimulation with Toll-like receptor agonists in cancer therapy. Oncoimmunology 5:e1088631

    Article  Google Scholar 

  • Kang QZ, Duan GC, Fan QT, Xi YL (2005) Fusion expression of Helicobacter pylori neutrophil-activating protein in E.coli. World J Gastroenterol 11:454–456

    CAS  Article  Google Scholar 

  • Kidner TB, Morton DL, Lee DJ, Hoban M, Foshag LJ, Turner RR, Faries MB (2012) Combined intralesional Bacille Calmette-Guerin (BCG) and topical imiquimod for in-transit melanoma. J Immunother 35:716–720

    CAS  Article  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    CAS  Article  Google Scholar 

  • Martorelli D, Muraro E, Merlo A, Turrini R, Rosato A, Dolcetti R (2010) Role of CD4+ cytotoxic T lymphocytes in the control of viral diseases and cancer. Int Rev Immunol 29:371–402

    CAS  Article  Google Scholar 

  • Mempel TR, Bauer CA (2009) Intravital imaging of CD8+ T cell function in cancer. Clin Exp Metastasis 26:311–327

    Article  Google Scholar 

  • Mikulandra M, Pavelic J, Glavan TM (2017) Recent findings on the application of toll-like receptors agonists in cancer therapy. Curr Med Chem 24:2011–2032

    CAS  Article  Google Scholar 

  • Narayan R, Nguyen H, Bentow JJ, Moy L, Lee DK, Greger S, Haskell J, Vanchinathan V, Chang PL et al (2012) Immunomodulation by imiquimod in patients with high-risk primary melanoma. J Invest Dermatol 132:163–169

    CAS  Article  Google Scholar 

  • Redelman-Sidi G, Glickman MS, Bochner BH (2014) The mechanism of action of BCG therapy for bladder cancer–a current perspective. Nat Rev Urol 11:153–162

    CAS  Article  Google Scholar 

  • Riggs P (2000) Expression and purification of recombinant proteins by fusion to maltose-binding protein. Mol Biotechnol 15:51–63

    CAS  Article  Google Scholar 

  • Rodriguez-Cerdeira C, Carnero Gregorio M, Lopez-Barcenas A, Sanchez-Blanco E, Sanchez-Blanco B, Fabbrocini G, Bardhi B, Sinani A, Guzman RA (2017) Advances in Immunotherapy for Melanoma: a comprehensive review. Mediators Inflamm 2017:3264217

    Article  Google Scholar 

  • Sanlorenzo M, Vujic I, Posch C, Dajee A, Yen A, Kim S, Ashworth M, Rosenblum MD, Algazi A et al (2014) Melanoma immunotherapy. Cancer Biol Ther 15:665–674

    Article  Google Scholar 

  • Schadendorf D, van Akkooi ACJ, Berking C, Griewank KG, Gutzmer R, Hauschild A, Stang A, Roesch A, Ugurel S (2018) Melanoma Lancet 392:971–984

    Article  Google Scholar 

  • Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69:7–34

    Article  Google Scholar 

  • Sisti A, Sisti G, Oranges CM (2014) Topical treatment of melanoma skin metastases with imiquimod: a review. Dermatol Online J 21:14

    Google Scholar 

  • Smith M, Garcia-Martinez E, Pitter MR, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L (2018) Trial Watch: Toll-like receptor agonists in cancer immunotherapy. Oncoimmunology 7:e1526250

    Article  Google Scholar 

  • Vacchelli E, Eggermont A, Sautes-Fridman C, Galon J, Zitvogel L, Kroemer G, Galluzzi L (2013) Trial Watch: Toll-like receptor agonists for cancer therapy. Oncoimmunology 2:e25238

    Article  Google Scholar 

  • Vacchelli E, Galluzzi L, Eggermont A, Fridman WH, Galon J, Sautes-Fridman C, Tartour E, Zitvogel L, Kroemer G (2012) Trial watch: FDA-approved Toll-like receptor agonists for cancer therapy. Oncoimmunology 1:894–907

    Article  Google Scholar 

  • Wahl RU, Braunschweig T, Ghassemi A, Rubben A (2016) Immunotherapy with imiquimod and interferon alfa for metastasized Merkel cell carcinoma. Curr Oncol 23:e150–e153

    CAS  Article  Google Scholar 

  • Wang T, Liu X, Ji Z, Men Y, Du M, Ding C, Wu Y, Liu X, Kang Q (2015) Antitumor and immunomodulatory effects of recombinant fusion protein rMBP-NAP through TLR-2 dependent mechanism in tumor bearing mice. Int Immunopharmacol 29:876–883

    CAS  Article  Google Scholar 

  • Weigelin B, Krause M, Friedl P (2011) Cytotoxic T lymphocyte migration and effector function in the tumor microenvironment. Immunol Lett 138:19–21

    CAS  Article  Google Scholar 

  • Yang H, Wang B, Wang T, Xu L, He C, Wen H, Yan J, Su H, Zhu X (2014) Toll-like receptor 4 prompts human breast cancer cells invasiveness via lipopolysaccharide stimulation and is overexpressed in patients with lymph node metastasis. PLoS ONE 9:e109980

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This study was supported by the grants from the National Natural Science Foundation of China [Grant Nos. 81901584 and 81571526], the Training Plan of Young Backbone Teachers in Colleges and Universities of Henan Province [2019GGJS016], and National Innovation and Entrepreneurship Training Program for College Students [202010459020].

Author information

Authors and Affiliations

Authors

Contributions

JL, CD, XW and LY performed experiments, analyzed data, and reviewed the manuscript. XL and QK undertook project design and manuscript revisions.

Corresponding authors

Correspondence to Xin Liu or Qiaozhen Kang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Ethical approval

The present study was approved by the Ethical Committee of the Zhengzhou University.

Patient consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Ding, C., Wang, X. et al. TLR agonist rMBP-NAP inhibits B16 melanoma tumor growth via induction of DCs maturation and T-cells cytotoxic response. Cytotechnology 74, 459–467 (2022). https://doi.org/10.1007/s10616-022-00532-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-022-00532-4

Keywords

  • rMBP-NAP
  • Melanoma
  • DCs
  • T cells