Proliferation characteristics of cells cultured under periodic versus static conditions

Abstract

In vitro culture models have become an indispensable tool for assessing a vast variety of biological questions in many scientific fields. However, common in vitro cultures are maintained under static conditions, which do not reflect the in vivo situation and create a non-physiological environment. To assess whether the growth characteristics of cells cultured at pulsed-perfused versus static conditions differ, we observed the growth of differentially cultured cells in vitro by life-cell time-lapse imaging of recombinant HEK293YFPI152L cells, stably expressing yellow fluorescent protein. Cells were grown for ~ 30 h at 37 °C and ambient CO2 concentration in biochips mounted into a custom-designed 3D printed carrier and were imaged at a rate of ten images per hour using a fluorescence microscope with environment control infrastructure. Cells in one chip were maintained under static conditions whereas cells in another chip were recurrently perfused with fresh media. Generated image series were quantitatively analyzed using a custom-modified cell detection software. Imaging data averaged from four biological replicates per culturing condition demonstrate that cells cultured under conventional conditions exhibit an exponential growth rate. In contrast, cells cultured in periodic mode exhibited a non-exponential growth rate. Our data clearly indicate differential growth characteristics of cells cultured under periodic versus static conditions highlighting the impact of the culture conditions on the physiology of cells in vitro.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Abolpour Mofrad S, Kuenzel K, Friedrich O, Gilbert DF (2016) Optimizing neuronal differentiation of human pluripotent NT2 stem cells in monolayer cultures. Dev Growth Differ 58:664–676

    Article  CAS  PubMed  Google Scholar 

  2. Alexander F Jr, Eggert S, Wiest J (2018) A novel lab-on-a-chip platform for spheroid metabolism monitoring. Cytotechnology. 70:375–386. https://doi.org/10.1007/s10616-017-0152-x

    Article  CAS  PubMed  Google Scholar 

  3. Bagriantsev SN, Gracheva EO, Gallagher PG (2014) Piezo proteins: regulators of mechanosensation and other cellular processes. J Biol Chem 289:31673–31681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Balansa W, Islam R, Fontaine F, Piggott AM, Zhang H, Webb TI, Gilbert DF, Lynch JW, Capon RJ (2010) Ircinialactams: subunit-selective glycine receptor modulators from Australian sponges of the family Irciniidae. Bioorg Med Chem 18:2912–2919

    Article  CAS  PubMed  Google Scholar 

  5. Balansa W, Islam R, Fontaine F, Piggott AM, Zhang H, Xiao X, Webb TI, Gilbert DF, Lynch JW, Capon RJ (2013a) Sesterterpene glycinyl-lactams: a new class of glycine receptor modulator from Australian marine sponges of the genus Psammocinia. Org Biomol Chem 11:4695–4701

    Article  CAS  PubMed  Google Scholar 

  6. Balansa W, Islam R, Gilbert DF, Fontaine F, Xiao X, Zhang H, Piggott AM, Lynch JW, Capon RJ (2013b) Australian marine sponge alkaloids as a new class of glycine-gated chloride channel receptor modulator. Bioorg Med Chem 21:4420–4425

    Article  CAS  PubMed  Google Scholar 

  7. Bhise NS, Ribas J, Manoharan V, Zhang YS, Polini A, Massa S, Dokmeci MR, Khademhosseini A (2014) Organ-on-a-chip platforms for studying drug delivery systems. J Control Release 190:82–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cho S, Yoon JY (2017) Organ-on-a-chip for assessing environmental toxicants. Curr Opin Biotechnol 45:34–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chung SK, Vanbellinghen JF, Mullins JG, Robinson A, Hantke J, Hammond CL, Gilbert DF, Freilinger M, Ryan M, Kruer MC, Masri A, Gurses C, Ferrie C, Harvey K, Shiang R, Christodoulou J, Andermann F, Andermann E, Thomas RH, Harvey RJ, Lynch JW, Rees MI (2010) Pathophysiological mechanisms of dominant and recessive GLRA1 mutations in hyperekplexia. J Neurosci 30:9612–9620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Coecke S, Balls M, Bowe G, Davis J, Gstraunthaler G, Hartung T, Hay R, Merten OW, Price A, Schechtman L, Stacey G, Stokes W (2005) Guidance on good cell culture practice. a report of the second ECVAM task force on good cell culture practice. Altern Lab Anim 33:261–287

    CAS  Article  Google Scholar 

  11. Demmel F, Brischwein M, Wolf P, Huber F, Pfister C, Wolf B (2015) Nutrient depletion and metabolic profiles in breast carcinoma cell lines measured with a label-free platform. Physiol Meas 36:1367–1381

    Article  CAS  PubMed  Google Scholar 

  12. Eklund SE, Taylor D, Kozlov E, Prokop A, Cliffel DE (2004) A microphysiometer for simultaneous measurement of changes in extracellular glucose, lactate, oxygen, and acidification rate. Anal Chem 76:519–527

    Article  CAS  PubMed  Google Scholar 

  13. Fang Y (2007) Non-invasive optical biosensor for probing cell signaling. Sensors (Basel, Switzerland) 7:2316–2329

    Article  CAS  Google Scholar 

  14. Gebhardt FM, Mitrovic AD, Gilbert DF, Vandenberg RJ, Lynch JW, Dodd PR (2010) Exon-skipping splice variants of excitatory amino acid transporter-2 (EAAT2) form heteromeric complexes with full-length EAAT2. J Biol Chem 285:31313–31324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gilbert DF, Boutros M (2016) A protocol for a high-throughput multiplex cell viability assay. Methods Mol Biol 1470:75–84

    Article  CAS  PubMed  Google Scholar 

  16. Gilbert D, Esmaeili A, Lynch JW (2009a) Optimizing the expression of recombinant alphabetagamma GABAA receptors in HEK293 cells for high-throughput screening. J Biomol Screen 14:86–91

    Article  CAS  PubMed  Google Scholar 

  17. Gilbert DF, Islam R, Lynagh T, Lynch JW, Webb TI (2009b) High throughput techniques for discovering new glycine receptor modulators and their binding sites. Front Mol Neurosci 2:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gilbert DF, Meinhof T, Pepperkok R, Runz H (2009c) DetecTiff: a novel image analysis routine for high-content screening microscopy. J Biomol Screen 14:944–955

    Article  CAS  PubMed  Google Scholar 

  19. Gilbert DF, Wilson JC, Nink V, Lynch JW, Osborne GW (2009d) Multiplexed labeling of viable cells for high-throughput analysis of glycine receptor function using flow cytometry. Cytom A 75:440–449

    Article  CAS  Google Scholar 

  20. Gilbert DF, Erdmann G, Zhang X, Fritzsche A, Demir K, Jaedicke A, Muehlenberg K, Wanker EE, Boutros M (2011) A novel multiplex cell viability assay for high-throughput RNAi screening. PLoS ONE 6:e28338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gu MB, Mitchell RJ, Kim BC (2004) Whole-cell-based biosensors for environmental biomonitoring and application. Adv Biochem Eng Biotechnol 87:269–305

    CAS  PubMed  Google Scholar 

  22. Hartung T, Gstraunthaler G, Coecke S, Lewis D, Blanck O, Balls M (2001) Good cell culture practice (GCCP)–an initiative for standardization and quality control of in vitro studies. The establishment of an ECVAM task force on GCCP. Altex 18:75–78

    CAS  PubMed  Google Scholar 

  23. Hu J, Han J, Li H, Zhang X, Liu L, Chen F, Zeng B (2018) Human embryonic kidney 293 cells: a vehicle for biopharmaceutical manufacturing, structural biology, and electrophysiology. Cells Tissues Organs 205:1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662–1668

    Article  CAS  Google Scholar 

  25. Inamdar NK, Borenstein JT (2011) Microfluidic cell culture models for tissue engineering. Curr Opin Biotechnol 22:681–689

    Article  CAS  PubMed  Google Scholar 

  26. Khademhosseini A, Langer R (2016) A decade of progress in tissue engineering. Nat Protoc 11:1775–1781

    Article  CAS  PubMed  Google Scholar 

  27. Kruger W, Gilbert D, Hawthorne R, Hryciw DH, Frings S, Poronnik P, Lynch JW (2005) A yellow fluorescent protein-based assay for high-throughput screening of glycine and GABAA receptor chloride channels. Neurosci Lett 380:340–345

    Article  CAS  PubMed  Google Scholar 

  28. Kuenzel K, Friedrich O, Gilbert DF (2016) A recombinant human pluripotent stem cell line stably expressing halide-sensitive YFP-I152L for GABAAR and GlyR-targeted high-throughput drug screening and toxicity testing. Front Mol Neurosci 9:51. https://doi.org/10.3389/fnmol.2016.00051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kuenzel K, Mofrad SA, Gilbert DF (2017) Phenotyping cellular viability by functional analysis of ion channels: GlyR-targeted screening in NT2-N cells. In: Gilbert DF, Friedrich O (eds) Cell viability assays. Methods in Molecular Biology 1601:205–214. Humana Press, New York, NY

  30. Liu L, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC (2006) Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell 21:521–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu Q, Wu C, Cai H, Hu N, Zhou J, Wang P (2014) Cell-based biosensors and their application in biomedicine. Chem Rev 114:6423–6461

    Article  CAS  PubMed  Google Scholar 

  32. Mahto SK, Yoon TH, Rhee SW (2010) A new perspective on in vitro assessment method for evaluating quantum dot toxicity by using microfluidics technology. Biomicrofluidics 4:pii:034111. https://doi.org/10.1063/1.3486610

  33. Marx U, Andersson TB, Bahinski A, Beilmann M, Beken S, Cassee FR, Cirit M, Daneshian M, Fitzpatrick S, Frey O, Gaertner C, Giese C, Griffith L, Hartung T, Heringa MB, Hoeng J, De Jong WH, Kojima H, Kuehnl J, Leist M, Luch A, Maschmeyer I, Sakharov D, Sips AJ, Steger-Hartmann T, Tagle DA, Tonevitsky A, Tralau T, Tsyb S, Van De Stolpe A, Vandebriel R, Vulto P, Wang J, Wiest J, Rodenburg M, Roth A (2016) Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. Altex 33:272–321

    PubMed  PubMed Central  Google Scholar 

  34. Mcconnell HM, Owicki JC, Parce JW, Miller DL, Baxter GT, Wada HG, Pitchford S (1992) The cytosensor microphysiometer: biological applications of silicon technology. Science 257:1906–1912

    Article  CAS  PubMed  Google Scholar 

  35. McGillicuddy N, Floris P, Albrecht S, Bones J (2018) Examining the sources of variability in cell culture media used for biopharmaceutical production. Biotechnol Lett 40:5–21. https://doi.org/10.1007/s10529-017-2437-8

    Article  CAS  PubMed  Google Scholar 

  36. Menzner AK, Abolpour Mofrad S, Friedrich O, Gilbert DF (2015) Towards in vitro DT/DNT testing: assaying chemical susceptibility in early differentiating NT2 cells. Toxicology 338:69–76

    Article  CAS  PubMed  Google Scholar 

  37. Pamies D, Bal-Price A, Simeonov A, Tagle D, Allen D, Gerhold D, Yin D, Pistollato F, Inutsuka T, Sullivan K, Stacey G, Salem H, Leist M, Daneshian M, Vemuri MC, Mcfarland R, Coecke S, Fitzpatrick SC, Lakshmipathy U, Mack A, Wang WB, Yamazaki D, Sekino Y, Kanda Y, Smirnova L, Hartung T (2017) Good cell culture practice for stem cells and stem-cell-derived models. Altex 34:95–132

    PubMed  Google Scholar 

  38. Pfister C, Bozsak C, Wolf P, Demmel F, Brischwein M (2015) Cell shape-dependent shear stress on adherent cells in a micro-physiologic system as revealed by FEM. Physiol Meas 36:955–966

    Article  CAS  PubMed  Google Scholar 

  39. Russell WMS, Burch RL (1959) The principles of humane experimental technique. Methuen, London

    Google Scholar 

  40. Schneidereit D, Kraus L, Meier JC, Friedrich O, Gilbert DF (2017) Step-by-step guide to building an inexpensive 3D printed motorized positioning stage for automated high-content screening microscopy. Biosens Bioelectron 92:472–481. https://doi.org/10.1016/j.bios.2016.10.078

    Article  CAS  PubMed  Google Scholar 

  41. Shekar R, Ranganathan K (2012) Phenotypic and growth characterization of human mesenchymal stem cells cultured from permanent and deciduous teeth. Indian J Dent Res 23:838–839

    PubMed  Google Scholar 

  42. Spitzer P, Condic M, Herrmann M, Oberstein TJ, Scharin-Mehlmann M, Gilbert DF, Friedrich O, Grömer T, Kornhuber J, Lang R, Maler JM (2016) Amyloidogenic amyloid-β-peptide variants induce microbial agglutination and exert antimicrobial activity. Sci Rep 6:32228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stoker MGP, Rubin H (1967) Density dependent inhibition of cell growth in culture. Nature 215:171–172

    Article  CAS  PubMed  Google Scholar 

  44. Talwar S, Lynch JW, Gilbert DF (2013) Fluorescence-based high-throughput functional profiling of ligand-gated ion channels at the level of single cells. PLoS ONE 8:e58479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. van der Valk J, Bieback K, Buta C, Cochrane B, Dirks WG, Fu J, Hickman JJ, Hohensee C, Kolar R, Liebsch M, Pistollato F, Schulz M, Thieme D, Weber T, Wiest J, Winkler S, Gstraunthaler G (2018) Fetal Bovine Serum (FBS): Past - Present - Future. ALTEX 35:99–118. https://doi.org/10.14573/altex.1705101

    Article  PubMed  Google Scholar 

  46. Van Midwoud PM, Janse A, Merema MT, Groothuis GM, Verpoorte E (2012) Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. Anal Chem 84:3938–3944

    Article  CAS  PubMed  Google Scholar 

  47. Walzik MP, Vollmar V, Lachnit T, Dietz H, Haug S, Bachmann H, Fath M, Aschenbrenner D, Abolpour Mofrad S, Friedrich O, Gilbert DF (2015) A portable low-cost long-term live-cell imaging platform for biomedical research and education. Biosens Bioelectron 64:639–649

    Article  CAS  PubMed  Google Scholar 

  48. Weiss D, Brischwein M, Grothe H, Wolf B, Wiest J (2013) Label-free monitoring of whole cell vitality. Conf Proc IEEE Eng Med Biol Soc 2013:1607–1610

    CAS  PubMed  Google Scholar 

  49. Weltin A, Slotwinski K, Kieninger J, Moser I, Jobst G, Wego M, Ehret R, Urban GA (2014) Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem. Lab Chip 14:138–146

    Article  CAS  PubMed  Google Scholar 

  50. Wiest J, Brischwein M, Ressler J, Otto AM, Grothe H, Wolf B (2005) Cellular assays with multiparametric bioelectronic sensor chips. CHIMIA Int J Chem 59:243–246

    Article  CAS  Google Scholar 

  51. Wiest J, Stadthagen T, Schmidhuber M, Brischwein M, Ressler J, Raeder U, Grothe H, Melzer A, Wolf B (2006) Intelligent mobile lab for metabolics in environmental monitoring. Anal Lett 39:1759–1771

    Article  CAS  Google Scholar 

  52. Witzel F, Fritsche-Guenther R, Lehmann N, Sieber A, Bluthgen N (2015) Analysis of impedance-based cellular growth assays. Bioinformatics 31:2705–2712

    Article  CAS  PubMed  Google Scholar 

  53. Wolf B, Brischwein M, Baumann W, Ehret R, Kraus M (1998) Monitoring of cellular signalling and metabolism with modular sensor-technique: the physiocontrol-microsystem (PCM). Biosens Bioelectron 13:501–509

    Article  CAS  PubMed  Google Scholar 

  54. Yao T, Asayama Y (2017) Animal-cell culture media: history, characteristics, and current issues. Reprod Med Biol 16:99–117

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yates CA, Ford MJ, Mort RL (2017) A multi-stage representation of cell proliferation as a markov process. Bull Math Biol 79:2905–2928

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge funding of the Staedtler Stiftung and ongoing support from the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German Research Foundation (DFG) in the framework of the German Excellence Initiative. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

J.W. and D.F.G. conceived the study. S.A.M. and D.F.G. conducted imaging experiments. D.F.G. analyzed and displayed imaging data. D.F.G. and J.W. and wrote the paper. All authors commented and agreed on the manuscript.

Corresponding author

Correspondence to Daniel F. Gilbert.

Ethics declarations

Conflict of interest

JW is CEO and shareholder of Cellasys GmbH.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gilbert, D.F., Mofrad, S.A., Friedrich, O. et al. Proliferation characteristics of cells cultured under periodic versus static conditions. Cytotechnology 71, 443–452 (2019). https://doi.org/10.1007/s10616-018-0263-z

Download citation

Keywords

  • Cell growth
  • Biochip
  • Microfluidics
  • HEK293
  • YFPI152L
  • Long-term time-lapse microscopy