Advertisement

Proliferation characteristics of cells cultured under periodic versus static conditions

  • Daniel F. Gilbert
  • Sepideh Abolpour Mofrad
  • Oliver Friedrich
  • Joachim Wiest
Short Communication
  • 26 Downloads

Abstract

In vitro culture models have become an indispensable tool for assessing a vast variety of biological questions in many scientific fields. However, common in vitro cultures are maintained under static conditions, which do not reflect the in vivo situation and create a non-physiological environment. To assess whether the growth characteristics of cells cultured at pulsed-perfused versus static conditions differ, we observed the growth of differentially cultured cells in vitro by life-cell time-lapse imaging of recombinant HEK293YFPI152L cells, stably expressing yellow fluorescent protein. Cells were grown for ~ 30 h at 37 °C and ambient CO2 concentration in biochips mounted into a custom-designed 3D printed carrier and were imaged at a rate of ten images per hour using a fluorescence microscope with environment control infrastructure. Cells in one chip were maintained under static conditions whereas cells in another chip were recurrently perfused with fresh media. Generated image series were quantitatively analyzed using a custom-modified cell detection software. Imaging data averaged from four biological replicates per culturing condition demonstrate that cells cultured under conventional conditions exhibit an exponential growth rate. In contrast, cells cultured in periodic mode exhibited a non-exponential growth rate. Our data clearly indicate differential growth characteristics of cells cultured under periodic versus static conditions highlighting the impact of the culture conditions on the physiology of cells in vitro.

Keywords

Cell growth Biochip Microfluidics HEK293 YFPI152L Long-term time-lapse microscopy 

Notes

Acknowledgements

The authors gratefully acknowledge funding of the Staedtler Stiftung and ongoing support from the Erlangen Graduate School in Advanced Optical Technologies (SAOT) by the German Research Foundation (DFG) in the framework of the German Excellence Initiative. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Authors’ contribution

J.W. and D.F.G. conceived the study. S.A.M. and D.F.G. conducted imaging experiments. D.F.G. analyzed and displayed imaging data. D.F.G. and J.W. and wrote the paper. All authors commented and agreed on the manuscript.

Compliance with ethical standards

Conflict of interest

JW is CEO and shareholder of Cellasys GmbH.

References

  1. Abolpour Mofrad S, Kuenzel K, Friedrich O, Gilbert DF (2016) Optimizing neuronal differentiation of human pluripotent NT2 stem cells in monolayer cultures. Dev Growth Differ 58:664–676CrossRefPubMedGoogle Scholar
  2. Alexander F Jr, Eggert S, Wiest J (2018) A novel lab-on-a-chip platform for spheroid metabolism monitoring. Cytotechnology. 70:375–386.  https://doi.org/10.1007/s10616-017-0152-x CrossRefPubMedGoogle Scholar
  3. Bagriantsev SN, Gracheva EO, Gallagher PG (2014) Piezo proteins: regulators of mechanosensation and other cellular processes. J Biol Chem 289:31673–31681CrossRefPubMedPubMedCentralGoogle Scholar
  4. Balansa W, Islam R, Fontaine F, Piggott AM, Zhang H, Webb TI, Gilbert DF, Lynch JW, Capon RJ (2010) Ircinialactams: subunit-selective glycine receptor modulators from Australian sponges of the family Irciniidae. Bioorg Med Chem 18:2912–2919CrossRefPubMedGoogle Scholar
  5. Balansa W, Islam R, Fontaine F, Piggott AM, Zhang H, Xiao X, Webb TI, Gilbert DF, Lynch JW, Capon RJ (2013a) Sesterterpene glycinyl-lactams: a new class of glycine receptor modulator from Australian marine sponges of the genus Psammocinia. Org Biomol Chem 11:4695–4701CrossRefPubMedGoogle Scholar
  6. Balansa W, Islam R, Gilbert DF, Fontaine F, Xiao X, Zhang H, Piggott AM, Lynch JW, Capon RJ (2013b) Australian marine sponge alkaloids as a new class of glycine-gated chloride channel receptor modulator. Bioorg Med Chem 21:4420–4425CrossRefPubMedGoogle Scholar
  7. Bhise NS, Ribas J, Manoharan V, Zhang YS, Polini A, Massa S, Dokmeci MR, Khademhosseini A (2014) Organ-on-a-chip platforms for studying drug delivery systems. J Control Release 190:82–93CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cho S, Yoon JY (2017) Organ-on-a-chip for assessing environmental toxicants. Curr Opin Biotechnol 45:34–42CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chung SK, Vanbellinghen JF, Mullins JG, Robinson A, Hantke J, Hammond CL, Gilbert DF, Freilinger M, Ryan M, Kruer MC, Masri A, Gurses C, Ferrie C, Harvey K, Shiang R, Christodoulou J, Andermann F, Andermann E, Thomas RH, Harvey RJ, Lynch JW, Rees MI (2010) Pathophysiological mechanisms of dominant and recessive GLRA1 mutations in hyperekplexia. J Neurosci 30:9612–9620CrossRefPubMedGoogle Scholar
  10. Coecke S, Balls M, Bowe G, Davis J, Gstraunthaler G, Hartung T, Hay R, Merten OW, Price A, Schechtman L, Stacey G, Stokes W (2005) Guidance on good cell culture practice. a report of the second ECVAM task force on good cell culture practice. Altern Lab Anim 33:261–287PubMedGoogle Scholar
  11. Demmel F, Brischwein M, Wolf P, Huber F, Pfister C, Wolf B (2015) Nutrient depletion and metabolic profiles in breast carcinoma cell lines measured with a label-free platform. Physiol Meas 36:1367–1381CrossRefPubMedGoogle Scholar
  12. Eklund SE, Taylor D, Kozlov E, Prokop A, Cliffel DE (2004) A microphysiometer for simultaneous measurement of changes in extracellular glucose, lactate, oxygen, and acidification rate. Anal Chem 76:519–527CrossRefPubMedGoogle Scholar
  13. Fang Y (2007) Non-invasive optical biosensor for probing cell signaling. Sensors (Basel, Switzerland) 7:2316–2329CrossRefGoogle Scholar
  14. Gebhardt FM, Mitrovic AD, Gilbert DF, Vandenberg RJ, Lynch JW, Dodd PR (2010) Exon-skipping splice variants of excitatory amino acid transporter-2 (EAAT2) form heteromeric complexes with full-length EAAT2. J Biol Chem 285:31313–31324CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gilbert DF, Boutros M (2016) A protocol for a high-throughput multiplex cell viability assay. Methods Mol Biol 1470:75–84CrossRefPubMedGoogle Scholar
  16. Gilbert D, Esmaeili A, Lynch JW (2009a) Optimizing the expression of recombinant alphabetagamma GABAA receptors in HEK293 cells for high-throughput screening. J Biomol Screen 14:86–91CrossRefPubMedGoogle Scholar
  17. Gilbert DF, Islam R, Lynagh T, Lynch JW, Webb TI (2009b) High throughput techniques for discovering new glycine receptor modulators and their binding sites. Front Mol Neurosci 2:17CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gilbert DF, Meinhof T, Pepperkok R, Runz H (2009c) DetecTiff: a novel image analysis routine for high-content screening microscopy. J Biomol Screen 14:944–955CrossRefPubMedGoogle Scholar
  19. Gilbert DF, Wilson JC, Nink V, Lynch JW, Osborne GW (2009d) Multiplexed labeling of viable cells for high-throughput analysis of glycine receptor function using flow cytometry. Cytom A 75:440–449CrossRefGoogle Scholar
  20. Gilbert DF, Erdmann G, Zhang X, Fritzsche A, Demir K, Jaedicke A, Muehlenberg K, Wanker EE, Boutros M (2011) A novel multiplex cell viability assay for high-throughput RNAi screening. PLoS ONE 6:e28338CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gu MB, Mitchell RJ, Kim BC (2004) Whole-cell-based biosensors for environmental biomonitoring and application. Adv Biochem Eng Biotechnol 87:269–305PubMedGoogle Scholar
  22. Hartung T, Gstraunthaler G, Coecke S, Lewis D, Blanck O, Balls M (2001) Good cell culture practice (GCCP)–an initiative for standardization and quality control of in vitro studies. The establishment of an ECVAM task force on GCCP. Altex 18:75–78PubMedGoogle Scholar
  23. Hu J, Han J, Li H, Zhang X, Liu L, Chen F, Zeng B (2018) Human embryonic kidney 293 cells: a vehicle for biopharmaceutical manufacturing, structural biology, and electrophysiology. Cells Tissues Organs 205:1–8CrossRefPubMedGoogle Scholar
  24. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662–1668CrossRefPubMedGoogle Scholar
  25. Inamdar NK, Borenstein JT (2011) Microfluidic cell culture models for tissue engineering. Curr Opin Biotechnol 22:681–689CrossRefPubMedGoogle Scholar
  26. Khademhosseini A, Langer R (2016) A decade of progress in tissue engineering. Nat Protoc 11:1775–1781CrossRefPubMedGoogle Scholar
  27. Kruger W, Gilbert D, Hawthorne R, Hryciw DH, Frings S, Poronnik P, Lynch JW (2005) A yellow fluorescent protein-based assay for high-throughput screening of glycine and GABAA receptor chloride channels. Neurosci Lett 380:340–345CrossRefPubMedGoogle Scholar
  28. Kuenzel K, Friedrich O, Gilbert DF (2016) A recombinant human pluripotent stem cell line stably expressing halide-sensitive YFP-I152L for GABAAR and GlyR-targeted high-throughput drug screening and toxicity testing. Front Mol Neurosci 9:51.  https://doi.org/10.3389/fnmol.2016.00051 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kuenzel K, Mofrad SA, Gilbert DF (2017) Phenotyping cellular viability by functional analysis of ion channels: GlyR-targeted screening in NT2-N cells. In: Gilbert DF, Friedrich O (eds) Cell viability assays. Methods in Molecular Biology 1601:205–214. Humana Press, New York, NYGoogle Scholar
  30. Liu L, Cash TP, Jones RG, Keith B, Thompson CB, Simon MC (2006) Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell 21:521–531CrossRefPubMedPubMedCentralGoogle Scholar
  31. Liu Q, Wu C, Cai H, Hu N, Zhou J, Wang P (2014) Cell-based biosensors and their application in biomedicine. Chem Rev 114:6423–6461CrossRefPubMedGoogle Scholar
  32. Mahto SK, Yoon TH, Rhee SW (2010) A new perspective on in vitro assessment method for evaluating quantum dot toxicity by using microfluidics technology. Biomicrofluidics 4:pii:034111.  https://doi.org/10.1063/1.3486610 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Marx U, Andersson TB, Bahinski A, Beilmann M, Beken S, Cassee FR, Cirit M, Daneshian M, Fitzpatrick S, Frey O, Gaertner C, Giese C, Griffith L, Hartung T, Heringa MB, Hoeng J, De Jong WH, Kojima H, Kuehnl J, Leist M, Luch A, Maschmeyer I, Sakharov D, Sips AJ, Steger-Hartmann T, Tagle DA, Tonevitsky A, Tralau T, Tsyb S, Van De Stolpe A, Vandebriel R, Vulto P, Wang J, Wiest J, Rodenburg M, Roth A (2016) Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. Altex 33:272–321PubMedPubMedCentralGoogle Scholar
  34. Mcconnell HM, Owicki JC, Parce JW, Miller DL, Baxter GT, Wada HG, Pitchford S (1992) The cytosensor microphysiometer: biological applications of silicon technology. Science 257:1906–1912CrossRefPubMedGoogle Scholar
  35. McGillicuddy N, Floris P, Albrecht S, Bones J (2018) Examining the sources of variability in cell culture media used for biopharmaceutical production. Biotechnol Lett 40:5–21.  https://doi.org/10.1007/s10529-017-2437-8 CrossRefPubMedGoogle Scholar
  36. Menzner AK, Abolpour Mofrad S, Friedrich O, Gilbert DF (2015) Towards in vitro DT/DNT testing: assaying chemical susceptibility in early differentiating NT2 cells. Toxicology 338:69–76CrossRefPubMedGoogle Scholar
  37. Pamies D, Bal-Price A, Simeonov A, Tagle D, Allen D, Gerhold D, Yin D, Pistollato F, Inutsuka T, Sullivan K, Stacey G, Salem H, Leist M, Daneshian M, Vemuri MC, Mcfarland R, Coecke S, Fitzpatrick SC, Lakshmipathy U, Mack A, Wang WB, Yamazaki D, Sekino Y, Kanda Y, Smirnova L, Hartung T (2017) Good cell culture practice for stem cells and stem-cell-derived models. Altex 34:95–132PubMedPubMedCentralGoogle Scholar
  38. Pfister C, Bozsak C, Wolf P, Demmel F, Brischwein M (2015) Cell shape-dependent shear stress on adherent cells in a micro-physiologic system as revealed by FEM. Physiol Meas 36:955–966CrossRefPubMedGoogle Scholar
  39. Russell WMS, Burch RL (1959) The principles of humane experimental technique. Methuen, LondonGoogle Scholar
  40. Schneidereit D, Kraus L, Meier JC, Friedrich O, Gilbert DF (2017) Step-by-step guide to building an inexpensive 3D printed motorized positioning stage for automated high-content screening microscopy. Biosens Bioelectron 92:472–481.  https://doi.org/10.1016/j.bios.2016.10.078 CrossRefPubMedGoogle Scholar
  41. Shekar R, Ranganathan K (2012) Phenotypic and growth characterization of human mesenchymal stem cells cultured from permanent and deciduous teeth. Indian J Dent Res 23:838–839PubMedGoogle Scholar
  42. Spitzer P, Condic M, Herrmann M, Oberstein TJ, Scharin-Mehlmann M, Gilbert DF, Friedrich O, Grömer T, Kornhuber J, Lang R, Maler JM (2016) Amyloidogenic amyloid-β-peptide variants induce microbial agglutination and exert antimicrobial activity. Sci Rep 6:32228CrossRefPubMedPubMedCentralGoogle Scholar
  43. Stoker MGP, Rubin H (1967) Density dependent inhibition of cell growth in culture. Nature 215:171–172CrossRefPubMedGoogle Scholar
  44. Talwar S, Lynch JW, Gilbert DF (2013) Fluorescence-based high-throughput functional profiling of ligand-gated ion channels at the level of single cells. PLoS ONE 8:e58479CrossRefPubMedPubMedCentralGoogle Scholar
  45. van der Valk J, Bieback K, Buta C, Cochrane B, Dirks WG, Fu J, Hickman JJ, Hohensee C, Kolar R, Liebsch M, Pistollato F, Schulz M, Thieme D, Weber T, Wiest J, Winkler S, Gstraunthaler G (2018) Fetal Bovine Serum (FBS): Past - Present - Future. ALTEX 35:99–118.  https://doi.org/10.14573/altex.1705101 CrossRefPubMedGoogle Scholar
  46. Van Midwoud PM, Janse A, Merema MT, Groothuis GM, Verpoorte E (2012) Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. Anal Chem 84:3938–3944CrossRefPubMedGoogle Scholar
  47. Walzik MP, Vollmar V, Lachnit T, Dietz H, Haug S, Bachmann H, Fath M, Aschenbrenner D, Abolpour Mofrad S, Friedrich O, Gilbert DF (2015) A portable low-cost long-term live-cell imaging platform for biomedical research and education. Biosens Bioelectron 64:639–649CrossRefPubMedGoogle Scholar
  48. Weiss D, Brischwein M, Grothe H, Wolf B, Wiest J (2013) Label-free monitoring of whole cell vitality. Conf Proc IEEE Eng Med Biol Soc 2013:1607–1610PubMedGoogle Scholar
  49. Weltin A, Slotwinski K, Kieninger J, Moser I, Jobst G, Wego M, Ehret R, Urban GA (2014) Cell culture monitoring for drug screening and cancer research: a transparent, microfluidic, multi-sensor microsystem. Lab Chip 14:138–146CrossRefPubMedGoogle Scholar
  50. Wiest J, Brischwein M, Ressler J, Otto AM, Grothe H, Wolf B (2005) Cellular assays with multiparametric bioelectronic sensor chips. CHIMIA Int J Chem 59:243–246CrossRefGoogle Scholar
  51. Wiest J, Stadthagen T, Schmidhuber M, Brischwein M, Ressler J, Raeder U, Grothe H, Melzer A, Wolf B (2006) Intelligent mobile lab for metabolics in environmental monitoring. Anal Lett 39:1759–1771CrossRefGoogle Scholar
  52. Witzel F, Fritsche-Guenther R, Lehmann N, Sieber A, Bluthgen N (2015) Analysis of impedance-based cellular growth assays. Bioinformatics 31:2705–2712CrossRefPubMedGoogle Scholar
  53. Wolf B, Brischwein M, Baumann W, Ehret R, Kraus M (1998) Monitoring of cellular signalling and metabolism with modular sensor-technique: the physiocontrol-microsystem (PCM). Biosens Bioelectron 13:501–509CrossRefPubMedGoogle Scholar
  54. Yao T, Asayama Y (2017) Animal-cell culture media: history, characteristics, and current issues. Reprod Med Biol 16:99–117CrossRefPubMedPubMedCentralGoogle Scholar
  55. Yates CA, Ford MJ, Mort RL (2017) A multi-stage representation of cell proliferation as a markov process. Bull Math Biol 79:2905–2928CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Daniel F. Gilbert
    • 1
    • 2
  • Sepideh Abolpour Mofrad
    • 1
    • 2
  • Oliver Friedrich
    • 1
    • 2
  • Joachim Wiest
    • 3
  1. 1.Institute of Medical BiotechnologyFriedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  2. 2.Erlangen Graduate School in Advanced Optical Technologies (SAOT)Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany
  3. 3.Cellasys GmbHKronburgGermany

Personalised recommendations