Efficient immortalization of cells derived from critically endangered Tsushima leopard cat (Prionailurus bengalensis euptilurus) with expression of mutant CDK4, Cyclin D1, and telomerase reverse transcriptase

Abstract

Tsushima leopard cat is the subspecies of Amur cats, and it is classified as the most highest class of critically endangered animals. Although the protection activity is highly recognized, the number of animals is decreasing due to the human activity and invasion of domestic cats and infectious disease. In this study, we succeeded primary culture of normal fibroblasts derived from the Tsushima leopard cat (Prionailurus bengalensis euptilurus). Furthermore, we introduced the human derived mutant Cyclin Dependent Kinase 4, Cyclin D1, and telomere reverse transcriptase. We showed that the expression of these three genes efficiently immortalized cells derived from Tsushima leopard cat. Furthermore, we showed that the chromosome pattern of the established cells is identical with the original one. These data indicate that our method of immortalization is useful to establish cell lines from critically endangered cats, which potentially contributes to the re-generation of critically endangered animals from cultured cell with reproductive technique, such as somatic cloning.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Associated-Press Rhino in San Diego pregnant, could help save subspecies. https://www.apnews.com/10c94168ec6d4efd894755ac84b17bca/Rhino-in-San-Diego-pregnant,-could-help-save-subspecies. Accessed 2 Jun 2018

  2. Donai K, Kuroda K, Guo Y et al (2013) Establishment of a reporter system to monitor silencing status in induced pluripotent stem cell lines. Anal Biochem 443:104–112. https://doi.org/10.1016/j.ab.2013.08.014

    CAS  Article  PubMed  Google Scholar 

  3. Donai K, Kiyono T, Eitsuka T et al (2014) Bovine and porcine fibroblasts can be immortalized with intact karyotype by the expression of mutant cyclin dependent kinase 4, cyclin D, and telomerase. J Biotechnol 176:50–57. https://doi.org/10.1016/j.jbiotec.2014.02.017

    CAS  Article  PubMed  Google Scholar 

  4. Fukuda T, Kobayashi T, Yasui H et al (1999) Distribution of Tsc2 protein in various normal rat tissues and renal tumours of Tsc2 mutant (Eker) rat detected by immunohistochemistry. Virchows Arch 434:341–350

    CAS  Article  Google Scholar 

  5. Fukuda T, Tani Y, Kobayashi T et al (2000) A new Western blotting method using polymer immunocomplexes: detection of Tsc1 and Tsc2 expression in various cultured cell lines. Anal Biochem 285:274–276. https://doi.org/10.1006/abio.2000.4787

    CAS  Article  PubMed  Google Scholar 

  6. Fukuda T, Kondo Y, Nakagama H (2008) The anti-proliferative effects of the CHFR depend on the forkhead associated domain, but not E3 ligase activity mediated by ring finger domain. PLoS One 3:e1776. https://doi.org/10.1371/journal.pone.0001776

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Fukuda T, Kurita J, Saito T et al (2012) Efficient establishment of primary fibroblast cultures from the hawksbill sea turtle (Eretmochelys imbricata). In Vitro Cell Dev Biol Anim 48:660–665. https://doi.org/10.1007/s11626-012-9565-1

    Article  PubMed  Google Scholar 

  8. Fukuda T, Katayama M, Kinoshita K et al (2014) Primary fibroblast cultures and karyotype analysis for the olive ridley sea turtle (Lepidochelys olivacea). In Vitro Cell Dev Biol Anim 50:381–383. https://doi.org/10.1007/s11626-013-9715-0

    Article  PubMed  Google Scholar 

  9. Fukuda T, Iino Y, Eitsuka T et al (2016) Cellular conservation of endangered midget buffalo (Lowland Anoa, Bubalus quarlesi) by establishment of primary cultured cell, and its immortalization with expression of cell cycle regulators. Cytotechnology 68:1937–1947. https://doi.org/10.1007/s10616-016-0004-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Fukuda T, Eitsuka T, Donai K et al (2018) Expression of human mutant cyclin dependent kinase 4, Cyclin D and telomerase extends the life span but does not immortalize fibroblasts derived from loggerhead sea turtle (Caretta caretta). Sci Rep 8:9229. https://doi.org/10.1038/s41598-018-27271-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Hayama S, Yamamoto H, Nakanishi S et al (2010) Risk analysis of feline immunodeficiency virus infection in Tsushima leopard cats (Prionailurus bengalensis euptilurus) and domestic cats using a geographic information system. J Vet Med Sci 72:1113–1118

    Article  Google Scholar 

  12. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621. https://doi.org/10.1016/0014-4827(61)90192-6

    CAS  Article  PubMed  Google Scholar 

  13. Incassati A, Patel D, McCance DJ (2006) Induction of tetraploidy through loss of p53 and upregulation of Plk1 by human papillomavirus type-16 E6. Oncogene 25:2444–2451. https://doi.org/10.1038/sj.onc.1209276

    CAS  Article  PubMed  Google Scholar 

  14. Izawa M (1991) Ecological study on the two species of Felidae in Japan.   In: Maruyama N, Bobek B, Ono Y, Regelin W, Bartos L, Ratcliffe PR (eds) Wildlife conservation. Sankyo, Tokyo, pp 141–143

    Google Scholar 

  15. Katayama M, Kiyono T, Horie K et al (2016) Establishment of an immortalized cell line derived from the prairie vole via lentivirus-mediated transduction of mutant cyclin-dependent kinase 4, cyclin D, and telomerase reverse transcriptase. Exp Anim 65:87–96. https://doi.org/10.1538/expanim.15-0061

    CAS  Article  PubMed  Google Scholar 

  16. Katayama M, Hirayama T, Kiyono T et al (2017) Immortalized prairie vole-derived fibroblasts (VMF-K4DTs) can be transformed into pluripotent stem cells and provide a useful tool with which to determine optimal reprogramming conditions. J Reprod Dev 63:311–318. https://doi.org/10.1262/jrd.2016-164

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kuroda K, Kiyono T, Eitsuka T et al (2015a) Establishment of cell lines derived from the genus macaca through controlled expression of cell cycle regulators. J Cell Biochem 116:205–211. https://doi.org/10.1002/jcb.24963

    CAS  Article  PubMed  Google Scholar 

  18. Kuroda K, Kiyono T, Isogai E et al (2015b) Immortalization of fetal bovine colon epithelial cells by expression of human cyclin D1, mutant cyclin dependent kinase 4, and telomerase reverse transcriptase: an in vitro model for bacterial infection. PLoS One 10:e0143473. https://doi.org/10.1371/journal.pone.0143473

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Masuda R, Yoshida MC (1995) Two Japanese wildcats, the Tsushima cat and the Iriomote Cat, show the same mitochondrial DNA lineage as the leopard cat Felis bengalensis. Zool Sci 12:655–659. https://doi.org/10.2108/zsj.12.655

    CAS  Article  PubMed  Google Scholar 

  20. Mavrogonatou E, Konstantinou A, Kletsas D (2018) Long-term exposure to TNF-α leads human skin fibroblasts to a p38 MAPK- and ROS-mediated premature senescence. Biogerontology 19:237–249. https://doi.org/10.1007/s10522-018-9753-9

    CAS  Article  PubMed  Google Scholar 

  21. Miyoshi H (2004) Gene delivery to hematopoietic stem cells using lentiviral vectors. Methods Mol Biol 246:429–438

    CAS  PubMed  Google Scholar 

  22. Ohtani N, Yamakoshi K, Takahashi A, Hara E (2010) Real-time in vivo imaging of p16Ink4a gene expression: a new approach to study senescence stress signaling in living animals. Cell Div 5:1. https://doi.org/10.1186/1747-1028-5-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Park YC (2011) The complete mitochondrial genome sequence of the Amur leopard cat, Prionailurus bengalensis euptilurus. Mitochondrial DNA 22:89–90. https://doi.org/10.3109/19401736.2011.624607

    CAS  Article  PubMed  Google Scholar 

  24. Qin X-Y, Fukuda T, Yang L, Zaha H, Akanuma H, Zeng Q, Yoshinaga J, Sone H (2014) Effects of bisphenol A exposure on the proliferation and senescence of normal human mammary epithelial cells. Cancer Biol Ther 13:296–306

    Article  Google Scholar 

  25. Shiomi K, Kiyono T, Okamura K et al (2011) CDK4 and cyclin D1 allow human myogenic cells to recapture growth property without compromising differentiation potential. Gene Ther 18:857–866. https://doi.org/10.1038/gt.2011.44

    CAS  Article  PubMed  Google Scholar 

  26. Wurster-Hill DH, Doi T, Izawa M, Ono Y (1987) Banded chromosome study of the Iriomote cat. J Hered 78:105–107. https://doi.org/10.1093/oxfordjournals.jhered.a110321

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Dr. Hiroyuki Miyoshi (RIKEN, BioResource Center) for providing lentiviral constructs. This work was supported by the Grant from JSPS, KAKENHI, Grant Number 17H03624.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Tohru Kiyono or Tomokazu Fukuda.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gouko, R., Onuma, M., Eitsuka, T. et al. Efficient immortalization of cells derived from critically endangered Tsushima leopard cat (Prionailurus bengalensis euptilurus) with expression of mutant CDK4, Cyclin D1, and telomerase reverse transcriptase. Cytotechnology 70, 1619–1630 (2018). https://doi.org/10.1007/s10616-018-0254-0

Download citation

Keywords

  • Endangered animals
  • Immortalization
  • Cellular senescence
  • Tsushima leopard cat