Advertisement

Efficient immortalization of cells derived from critically endangered Tsushima leopard cat (Prionailurus bengalensis euptilurus) with expression of mutant CDK4, Cyclin D1, and telomerase reverse transcriptase

  • Ryo Gouko
  • Manabu Onuma
  • Takahiro Eitsuka
  • Masafumi Katayama
  • Kouhei Takahashi
  • Kiyotaka Nakagawa
  • Miho Inoue-Murayama
  • Tohru Kiyono
  • Tomokazu Fukuda
Original Article
  • 88 Downloads

Abstract

Tsushima leopard cat is the subspecies of Amur cats, and it is classified as the most highest class of critically endangered animals. Although the protection activity is highly recognized, the number of animals is decreasing due to the human activity and invasion of domestic cats and infectious disease. In this study, we succeeded primary culture of normal fibroblasts derived from the Tsushima leopard cat (Prionailurus bengalensis euptilurus). Furthermore, we introduced the human derived mutant Cyclin Dependent Kinase 4, Cyclin D1, and telomere reverse transcriptase. We showed that the expression of these three genes efficiently immortalized cells derived from Tsushima leopard cat. Furthermore, we showed that the chromosome pattern of the established cells is identical with the original one. These data indicate that our method of immortalization is useful to establish cell lines from critically endangered cats, which potentially contributes to the re-generation of critically endangered animals from cultured cell with reproductive technique, such as somatic cloning.

Keywords

Endangered animals Immortalization Cellular senescence Tsushima leopard cat 

Notes

Acknowledgement

We thank Dr. Hiroyuki Miyoshi (RIKEN, BioResource Center) for providing lentiviral constructs. This work was supported by the Grant from JSPS, KAKENHI, Grant Number 17H03624.

References

  1. Associated-Press Rhino in San Diego pregnant, could help save subspecies. https://www.apnews.com/10c94168ec6d4efd894755ac84b17bca/Rhino-in-San-Diego-pregnant,-could-help-save-subspecies. Accessed 2 Jun 2018
  2. Donai K, Kuroda K, Guo Y et al (2013) Establishment of a reporter system to monitor silencing status in induced pluripotent stem cell lines. Anal Biochem 443:104–112.  https://doi.org/10.1016/j.ab.2013.08.014 CrossRefPubMedGoogle Scholar
  3. Donai K, Kiyono T, Eitsuka T et al (2014) Bovine and porcine fibroblasts can be immortalized with intact karyotype by the expression of mutant cyclin dependent kinase 4, cyclin D, and telomerase. J Biotechnol 176:50–57.  https://doi.org/10.1016/j.jbiotec.2014.02.017 CrossRefPubMedGoogle Scholar
  4. Fukuda T, Kobayashi T, Yasui H et al (1999) Distribution of Tsc2 protein in various normal rat tissues and renal tumours of Tsc2 mutant (Eker) rat detected by immunohistochemistry. Virchows Arch 434:341–350CrossRefGoogle Scholar
  5. Fukuda T, Tani Y, Kobayashi T et al (2000) A new Western blotting method using polymer immunocomplexes: detection of Tsc1 and Tsc2 expression in various cultured cell lines. Anal Biochem 285:274–276.  https://doi.org/10.1006/abio.2000.4787 CrossRefPubMedGoogle Scholar
  6. Fukuda T, Kondo Y, Nakagama H (2008) The anti-proliferative effects of the CHFR depend on the forkhead associated domain, but not E3 ligase activity mediated by ring finger domain. PLoS One 3:e1776.  https://doi.org/10.1371/journal.pone.0001776 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Fukuda T, Kurita J, Saito T et al (2012) Efficient establishment of primary fibroblast cultures from the hawksbill sea turtle (Eretmochelys imbricata). In Vitro Cell Dev Biol Anim 48:660–665.  https://doi.org/10.1007/s11626-012-9565-1 CrossRefPubMedGoogle Scholar
  8. Fukuda T, Katayama M, Kinoshita K et al (2014) Primary fibroblast cultures and karyotype analysis for the olive ridley sea turtle (Lepidochelys olivacea). In Vitro Cell Dev Biol Anim 50:381–383.  https://doi.org/10.1007/s11626-013-9715-0 CrossRefPubMedGoogle Scholar
  9. Fukuda T, Iino Y, Eitsuka T et al (2016) Cellular conservation of endangered midget buffalo (Lowland Anoa, Bubalus quarlesi) by establishment of primary cultured cell, and its immortalization with expression of cell cycle regulators. Cytotechnology 68:1937–1947.  https://doi.org/10.1007/s10616-016-0004-0 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Fukuda T, Eitsuka T, Donai K et al (2018) Expression of human mutant cyclin dependent kinase 4, Cyclin D and telomerase extends the life span but does not immortalize fibroblasts derived from loggerhead sea turtle (Caretta caretta). Sci Rep 8:9229.  https://doi.org/10.1038/s41598-018-27271-x CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hayama S, Yamamoto H, Nakanishi S et al (2010) Risk analysis of feline immunodeficiency virus infection in Tsushima leopard cats (Prionailurus bengalensis euptilurus) and domestic cats using a geographic information system. J Vet Med Sci 72:1113–1118CrossRefGoogle Scholar
  12. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621.  https://doi.org/10.1016/0014-4827(61)90192-6 CrossRefPubMedGoogle Scholar
  13. Incassati A, Patel D, McCance DJ (2006) Induction of tetraploidy through loss of p53 and upregulation of Plk1 by human papillomavirus type-16 E6. Oncogene 25:2444–2451.  https://doi.org/10.1038/sj.onc.1209276 CrossRefPubMedGoogle Scholar
  14. Izawa M (1991) Ecological study on the two species of Felidae in Japan.   In: Maruyama N, Bobek B, Ono Y, Regelin W, Bartos L, Ratcliffe PR (eds) Wildlife conservation. Sankyo, Tokyo, pp 141–143Google Scholar
  15. Katayama M, Kiyono T, Horie K et al (2016) Establishment of an immortalized cell line derived from the prairie vole via lentivirus-mediated transduction of mutant cyclin-dependent kinase 4, cyclin D, and telomerase reverse transcriptase. Exp Anim 65:87–96.  https://doi.org/10.1538/expanim.15-0061 CrossRefPubMedGoogle Scholar
  16. Katayama M, Hirayama T, Kiyono T et al (2017) Immortalized prairie vole-derived fibroblasts (VMF-K4DTs) can be transformed into pluripotent stem cells and provide a useful tool with which to determine optimal reprogramming conditions. J Reprod Dev 63:311–318.  https://doi.org/10.1262/jrd.2016-164 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kuroda K, Kiyono T, Eitsuka T et al (2015a) Establishment of cell lines derived from the genus macaca through controlled expression of cell cycle regulators. J Cell Biochem 116:205–211.  https://doi.org/10.1002/jcb.24963 CrossRefPubMedGoogle Scholar
  18. Kuroda K, Kiyono T, Isogai E et al (2015b) Immortalization of fetal bovine colon epithelial cells by expression of human cyclin D1, mutant cyclin dependent kinase 4, and telomerase reverse transcriptase: an in vitro model for bacterial infection. PLoS One 10:e0143473.  https://doi.org/10.1371/journal.pone.0143473 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Masuda R, Yoshida MC (1995) Two Japanese wildcats, the Tsushima cat and the Iriomote Cat, show the same mitochondrial DNA lineage as the leopard cat Felis bengalensis. Zool Sci 12:655–659.  https://doi.org/10.2108/zsj.12.655 CrossRefPubMedGoogle Scholar
  20. Mavrogonatou E, Konstantinou A, Kletsas D (2018) Long-term exposure to TNF-α leads human skin fibroblasts to a p38 MAPK- and ROS-mediated premature senescence. Biogerontology 19:237–249.  https://doi.org/10.1007/s10522-018-9753-9 CrossRefPubMedGoogle Scholar
  21. Miyoshi H (2004) Gene delivery to hematopoietic stem cells using lentiviral vectors. Methods Mol Biol 246:429–438PubMedGoogle Scholar
  22. Ohtani N, Yamakoshi K, Takahashi A, Hara E (2010) Real-time in vivo imaging of p16Ink4a gene expression: a new approach to study senescence stress signaling in living animals. Cell Div 5:1.  https://doi.org/10.1186/1747-1028-5-1 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Park YC (2011) The complete mitochondrial genome sequence of the Amur leopard cat, Prionailurus bengalensis euptilurus. Mitochondrial DNA 22:89–90.  https://doi.org/10.3109/19401736.2011.624607 CrossRefPubMedGoogle Scholar
  24. Qin X-Y, Fukuda T, Yang L, Zaha H, Akanuma H, Zeng Q, Yoshinaga J, Sone H (2014) Effects of bisphenol A exposure on the proliferation and senescence of normal human mammary epithelial cells. Cancer Biol Ther 13:296–306CrossRefGoogle Scholar
  25. Shiomi K, Kiyono T, Okamura K et al (2011) CDK4 and cyclin D1 allow human myogenic cells to recapture growth property without compromising differentiation potential. Gene Ther 18:857–866.  https://doi.org/10.1038/gt.2011.44 CrossRefPubMedGoogle Scholar
  26. Wurster-Hill DH, Doi T, Izawa M, Ono Y (1987) Banded chromosome study of the Iriomote cat. J Hered 78:105–107.  https://doi.org/10.1093/oxfordjournals.jhered.a110321 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Ryo Gouko
    • 1
  • Manabu Onuma
    • 2
    • 3
  • Takahiro Eitsuka
    • 4
  • Masafumi Katayama
    • 2
    • 3
  • Kouhei Takahashi
    • 1
  • Kiyotaka Nakagawa
    • 4
  • Miho Inoue-Murayama
    • 2
    • 5
  • Tohru Kiyono
    • 6
  • Tomokazu Fukuda
    • 1
    • 3
    • 7
  1. 1.Graduate School of Science and EngineeringIwate UniversityMoriokaJapan
  2. 2.Center for Environmental Biology and Ecosystem StudiesNational Institute for Environmental StudiesTsukubaJapan
  3. 3.Wildlife Genome Collaborative Research GroupNational Institute for Environmental StudiesTsukubaJapan
  4. 4.Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
  5. 5.Wildlife Research CenterKyoto UniversityKyotoJapan
  6. 6.Division of Carcinogenesis and Cancer Prevention, Department of Cell Culture TechnologyNational Cancer Center Research InstituteTokyoJapan
  7. 7.Soft-Path Engineering Research Center (SPERC)Iwate UniversityMoriokaJapan

Personalised recommendations