Advertisement

Cytotechnology

, Volume 70, Issue 3, pp 983–992 | Cite as

Pig testis extract augments adiponectin expression and secretion through the peroxisome proliferator-activated receptor signaling pathway in 3T3-L1 adipocytes

  • Keishi Kadooka
  • Mikako Sato
  • Takashi Matsumoto
  • Satoru Kuhara
  • Yoshinori Katakura
  • Tatsuya Fujimura
Article

Abstract

Adiponectin is a key molecule whose upregulation may ameliorate symptoms of type 2 diabetes mellitus and disorders of lipid metabolism. Several plant-derived components have been shown to enhance adiponectin secretion; however, there have been no reports on the effects of animal-derived products. Therefore, in the current study, we investigated whether hot-water extracts of specific livestock by-products induce the expression of adiponectin in mouse 3T3-L1 adipocytes. Out of the 11 extracts tested, pig testis extract (PTE) was found to enhance adiponectin expression and secretion by 3T3-L1 cells. Furthermore, simultaneous treatment with PTE and daidzein, a soy phytoestrogen, synergistically enhanced adiponectin secretion. Moreover, pretreatment with an estrogen receptor β antagonist (PHTPP) diminished adiponectin secretion from daidzein-treated cells but not from PTE-treated cells. Transcriptome analyses revealed that both daidzein and PTE regulate the peroxisome proliferator-activated receptor signaling pathway, although differences in the regulation of gene expression were observed between PTE- and daidzein-treated cells. These results suggest that PTE ameliorates lipid metabolic dysfunction by promoting adipocyte differentiation and enhancing adiponectin secretion via a mechanism different from that of daidzein.

Keywords

Pig testis extract Adiponectin PPAR 3T3-L1 

Notes

Acknowledgement

The authors would like to thank Dr. K. Yasuda for her expert assistance with DNA microarray analysis and Dr. Y. Nishiyama for discussion and review of the article.

Authors’ contribution

KK performed the research, MS and TM analyzed the data, SK performed informatics analysis, YK wrote the paper, TF designed the research study and wrote the paper.

Supplementary material

10616_2018_213_MOESM1_ESM.docx (21 kb)
Supplementary material 1 (DOCX 21 kb)

References

  1. Abe D, Saito T, Kubo Y, Nakamura Y, Sekiya K (2010) A fraction of unripe kiwi fruit extract regulates adipocyte differentiation and function in 3T3-L1 cells. BioFactors 36:52–59Google Scholar
  2. Bhathena SJ, Velasquez MT (2002) Beneficial role of dietary phytoestrogens in obesity and diabetes. Am J Clin Nutr 76:1191–1201CrossRefGoogle Scholar
  3. Delfosse V, Dendele B, Huet T, Grimaldi M, Boulahtouf A, Gerbal-Chaloin S, Beucher B, Roecklin D, Muller C, Rahmani R, Cavaillès V, Daujat-Chavanieu M, Vivat V, Pascussi JM, Balaguer P, Bourguet W (2015) Synergistic activation of human pregnane X receptor by binary cocktails of pharmaceutical and environmental compounds. Nat Commun 6:8089CrossRefGoogle Scholar
  4. Giovannucci E (2007) Metabolic syndrome, hyperinsulinemia, and colon cancer: a review. Am J Clin Nutr 86:836–842CrossRefGoogle Scholar
  5. Goto M, Yamazaki S, Kato Y, Yamamoto K, Katagata Y (2012) Anti-aging effects of high molecular weight proteoglycan from salmon nasal cartilage in hairless mice. Int J Mol Med 29:761–768Google Scholar
  6. Guilherme A, Virbasius JV, Puri V, Czech MP (2008) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9:367–377CrossRefGoogle Scholar
  7. Hataya Y, Akamizu T, Takaya K, Kanamoto N, Ariyasu H, Saijo M, Moriyama K, Shimatsu A, Kojima M, Kangawa K, Nakao K (2001) A low dose of ghrelin stimulates growth hormone (GH) release synergistically with GH-releasing hormone in humans. J Clin Endocrinol Metab 86:4552CrossRefGoogle Scholar
  8. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259:87–91CrossRefGoogle Scholar
  9. Huang PL (2009) A comprehensive definition for metabolic syndrome. Dis Model Mech 2:231–237CrossRefGoogle Scholar
  10. Jash A, Kwon HK, Sahoo A, Lee CG, So JS, Kim J, Oh YK, Kim YB, Im SH (2011) Topical application of porcine placenta extract inhibits the progression of experimental contact hypersensitivity. J Ethnopharmacol 133:654–662CrossRefGoogle Scholar
  11. Jeong S, Yoon M (2011) 17β-Estradiol inhibition of PPARγ-induced adipogenesis and adipocyte-specific gene expression. Acta Pharmacol Sin 32:230–238CrossRefGoogle Scholar
  12. Kadooka K, Fujii K, Matsumoto T, Sato M, Morimatsu F, Tashiro K, Kuhara S, Katakura Y (2015) Mechanisms and consequences of carnosine-induced activation of intestinal epithelial cells. J Funct Foods 13:32–37CrossRefGoogle Scholar
  13. Kadowaki T, Yamauchi T (2005) Adiponectin and adiponectin receptors. Endocr Rev 26:439–451CrossRefGoogle Scholar
  14. Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gusafsson JA (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology 139:4252–4263CrossRefGoogle Scholar
  15. Lee OH, Seo DH, Park CS, Kim YC (2010) Puerarin enhances adipocyte differentiation, adiponectin expression, and antioxidant response in 3T3-L1 cells. BioFactors 36:459–467CrossRefGoogle Scholar
  16. Maeda N, Takahashi M, Funahashi T, Kihara S, Nishizawa H, Kishida K, Nagaretani H, Matsuda M, Nomuro R, Ouchi N, Kuriyama H, Hotta K, Nakamura T, Shimomura I, Matsuzawa Y (2001) PPARγ ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes 50:2094–2099CrossRefGoogle Scholar
  17. Maury E, Brichard SM (2010) Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol 314:1–16CrossRefGoogle Scholar
  18. Merline R, Moreth K, Beckmann J, Nastase MV, Zeng-Brouwers J, Tralhão JG, Lemarchand P, Pfeilschifter J, Schaefer RM, Iozzo RV, Schaefer L (2011) Signaling by the matrix proteoglycan decorin controls inflammation and cancer through PDCD4 and microRNA-21. Sci Signal 4:ra75CrossRefGoogle Scholar
  19. Naowaboot J, Chung CH, Pannangpetch P, Choi R, Kim BH, Lee MY, Kukongviriyapan U (2012) Mulberry leaf extract increases adiponectin in murine 3T3-L1 adipocytes. Nutr Res 32:39–44CrossRefGoogle Scholar
  20. Okawa T, Yamaguchi Y, Takada S, Sakai Y, Numata N, Nakamura F (2012) Oral administration of collagen tripeptide improves dryness and pruritus in the acetone-induced dry skin model. J Dermatol Sci 66:136–143CrossRefGoogle Scholar
  21. Raffaitin C, Gin H, Empana JP, Helmer C, Berr C, Tzourio C, Portet F, Dartigues JF, Aipérovitch A, Barberger-Gateau P (2009) Metabolic syndrome and risk for incident Alzheimer’s disease or vascular dementia: the Three-City Study. Diabetes Care 32:169–174CrossRefGoogle Scholar
  22. Rivera L, Morón R, Zarzuelo A, Galisteo M (2009) Long-term resveratrol administration reduces metabolic disturbances and lowers blood pressure in obese Zucker rats. Biochem Pharmacol 77:1053–1063CrossRefGoogle Scholar
  23. Rotter V, Nagaev I, Smith U (2003) Interleukin-6 (IL-6) induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-α, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem 278:45777–45784CrossRefGoogle Scholar
  24. Sakamoto Y, Naka A, Ohara N, Kondo K, Iida K (2014) Daidzein regulates proinflammatory adipokines thereby improving obesity-related inflammation through PPARγ. Mol Nutr Food Res 58:718–726CrossRefGoogle Scholar
  25. Sato H, Sugai H, Kurosaki H, Ishikawa M, Funaki A, Kimura Y, Ueno K (2013) The effect of sex hormones on peroxisome proliferator-activated receptor gamma expression and activity in mature adipocytes. Biol Pharm Bull 36:564–573CrossRefGoogle Scholar
  26. Sharma G, Tyagi AK, Singh RP, Chan DC, Agarwal R (2004) Synergistic anti-cancer effects of grape seed extract and conventional cytotoxic agent doxorubicin against human breast carcinoma cells. Breast Cancer Res Treat 85:1–12CrossRefGoogle Scholar
  27. Spranger J, Kroke A, Möhlig M, Bergmann MM, Ristow M, Boeing H, Pfeiffer AF (2003) Adiponectin and protection against type 2 diabetes mellitus. Lancet 361:226–228CrossRefGoogle Scholar
  28. Teng BS, Wang CD, Zhang D, Wu JS, Pan D, Pan LF, Yang HJ, Zhou P (2012) Hypoglycemic effect and mechanism of a proteoglycan from ganoderma lucidum on streptozotocin-induced type 2 diabetic rats. Eur Rev Med Pharmacol Sci 16:166–175Google Scholar
  29. Trentham DE, Dynesius-Trentham RA, Orav EJ, Combitchi D, Lorenzo C, Sewell KL, Hafler DA, Weiner HL (1993) Effects of oral administration of type II collagen on rheumatoid arthritis. Science 261:1727–1730CrossRefGoogle Scholar
  30. Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni RA (2001) Hypoadiponectinemia in obesity and type 2 diabetes: close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 86:1930–1935CrossRefGoogle Scholar
  31. Yang X, Phillips DL, Ferguson AT, Nelson WG, Herman JG, Davidson NE (2001) Synergistic activation of functional estrogen receptor (ER)-α by DNA methyltransferase and histone deacetylase inhibition in human ER-α-negative breast cancer cells. Cancer Res 61:7025–7029Google Scholar
  32. Yoon M (2009) The role of PPARα in lipid metabolism and obesity: focusing on the effects of estrogen on PPARα actions. Pharmacol Res 60:151–159CrossRefGoogle Scholar
  33. Zeng R, Spolski R, Finkelstein SE, Oh S, Kovanen PE, Hinrichs CS, Pise-Masison CA, Radonovich MF, Brady JN, Restifo NP, Berzofsky JA, Leonard WJ (2005) Synergy of IL-21 and IL-15 in regulating CD8+ T cell expansion and function. J Exp Med 201:139–148CrossRefGoogle Scholar
  34. Zhang Y, Kouguchi T, Shimizu M, Ohmori T, Takahata Y, Morimatsu F (2010) Chicken collagen hydrolysate protects rats from hypertension and cardiovascular damage. J Med Food 13:399–405CrossRefGoogle Scholar
  35. Zhang T, Yamashita Y, Yasuda M, Yamamoto N, Ashida H Ashitaba (2015) (Angelica keiskei) extract prevents adiposity in high-fat diet-fed C57BL/6 mice. Food Funct 6:135–145Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.R&D CenterNH Foods Ltd.TsukubaJapan
  2. 2.Faculty of AgricultureKyushu UniversityFukuokaJapan

Personalised recommendations