, Volume 69, Issue 5, pp 815–829 | Cite as

Shell extracts of the edible mussel and oyster induce an enhancement of the catabolic pathway of human skin fibroblasts, in vitro

  • Thomas Latire
  • Florence Legendre
  • Mouloud Bouyoucef
  • Frédéric Marin
  • Franck Carreiras
  • Muriel Rigot-Jolivet
  • Jean-Marc Lebel
  • Philippe Galéra
  • Antoine SerpentiniEmail author
Original Article


Mollusc shells are composed of more than 95% calcium carbonate and less than 5% organic matrix consisting mostly of proteins, glycoproteins and polysaccharides. In this study, we investigated the effects of matrix macromolecular components extracted from the shells of two edible molluscs of economic interest, i.e., the blue mussel Mytilus edulis and the Pacific oyster Crassostrea gigas. The potential biological activities of these organic molecules were analysed on human dermal fibroblasts in primary culture. Our results demonstrate that shell extracts of the two studied molluscs modulate the metabolic activities of the cells. In addition, the extracts caused a decrease of type I collagen and a concomitant increase of active MMP-1, both at the mRNA and the protein levels. Therefore, our results suggest that shell extracts from M. edulis and C. gigas contain molecules that promote the catabolic pathway of human dermal fibroblasts. This work emphasises the potential use of these shell matrices in the context of anti-fibrotic strategies, particularly against scleroderma. More generally, it stresses the usefulness to valorise bivalve shells that are coproducts of shellfish farming activity.


Biological activity Extracellular matrix Fibroblast Mollusc Shell matrix 



The authors thank COPALIS (Boulogne-Sur-Mer, France) for providing shell powders, and Elsevier Language Editing Services for English revision. The project received the label of pole AQUIMER (M. Coquelle). This work was financially supported by the “Fonds Unique Interministériel” (FUI, French ministry of Economy and Industry, SEMINEROIL program) [09 2 90 6042]. MB were recipients of a PhD fellowship from the FUI and the Conseil Régional de Basse-Normandie [917RB103].

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Atlan G, Balmain N, Berland S, Vidal B, Lopez E (1997) Reconstruction of human maxillary defects with nacre powder: histological evidence for bone regeneration. C R Acad Sci III 320:253–258CrossRefGoogle Scholar
  2. Atlan G, Delattre O, Berland S, Le Faou A, Nabias G, Cot D, Lopez E (1999) Interface between bone and nacre implants in sheep. Biomaterials 11:1017–1022CrossRefGoogle Scholar
  3. Baker AH, Edwards DR, Murphy G (2002) Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J Cell Sci 115:3719–3727CrossRefGoogle Scholar
  4. Barrientos S, Stojadinovic O, Golinko MS, Brem H, Tomic-Canic M (2008) Growth factors and cytokines in wound healing. Wound Repair Regen 16:585–601CrossRefGoogle Scholar
  5. Beauchef G, Bigot N, Kypriotou M, Renard E, Porée B, Widom R, Dompmartin-Blanchere A, Oddos T, Maquart FX, Demoor M, Boumediene K, Galera P (2012) The p65 subunit of NF-kB inhibits COL1A1 gene transcription in human dermal and scleroderma fibroblasts through its recruitment on promoter by protein interaction with transcriptional activators (c-Krox, Sp1, and Sp3). J Biol Chem 287:3462–3478CrossRefGoogle Scholar
  6. Bédouet L, Schuller MJ, Marin F, Milet C, Lopez E, Giraud M (2001) Soluble proteins of the nacre of the giant oyster Pinctada maxima and the abalone Haliotis tuberculata extraction and partial analysis of nacre proteins. Comp Biochem Physiol B 128:389–400CrossRefGoogle Scholar
  7. Bédouet L, Rusconi F, Rousseau M, Duplat D, Marie A, Dubost L, Le Ny K, Berland S, Péduzzi J, Lopez E (2006) Identification of low molecular weight molecules as new components of the nacre organic matrix. Comp Biochem Physiol B 144:532–5343CrossRefGoogle Scholar
  8. Berland S, Delattre O, Borzeix S, Catonné Y, Lopez E (2005) Nacre/bone interface changes in durable nacre endosseous implants in sheep. Biomaterials 26:2767–2773CrossRefGoogle Scholar
  9. Berlanga-Acosta J, Gavilondo-Cowley J, Lopez-Saura P, Gonzales-Lopez T, Castro-Santana MD, Lopez-Mola E, Guillen-Nieto G, Herrera-Martinez L (2009) Epidermal growth factor in clinical practice—a review of its biological actions, clinical indications and safety implications. Int Wound J 6:331–346CrossRefGoogle Scholar
  10. Bigot N, Beauchef G, Hervieu M, Oddos T, Demoor M, Boumediene K, Galera P (2012) NF-kB accumulation associated with COL1A1 transactivators defects during chronological aging represses type I collagen expression through a 2112/261 bp region of the COL1A1 promoter in human skin fibroblasts. J Invest Dermatol 132:2360–2367CrossRefGoogle Scholar
  11. Birkedal-Hansen H, Moore WG, Bodden MK, Windsor LJ, Birkendal-Hansen B, DeCarlo A, Engler JA (1993) Matrix metalloproteinases: a review. Crit Rev Oral Biol Med 4:197–250CrossRefGoogle Scholar
  12. Carter JG (1990) Skeletal biomineralization: patterns, processes and evolutionary trends, vol I. Van Nostrand Reinhold, New YorkGoogle Scholar
  13. Checa AG, Esteban-Delgado FJ, Rodríguez-Navarro AB (2007) Crystallographic structure of the foliated calcite of bivalves. J Struct Biol 157:393–402CrossRefGoogle Scholar
  14. Dalbeck P, England J, Cusack M, Lee MR, Fallick A (2006) Crystallography and chemistry of the calcium carbonate polymorph switch in M. edulis shells. Eur J Miner 18:601–609CrossRefGoogle Scholar
  15. Denton CP, Abraham DJ (2001) Transforming growth factor-beta and connective tissue growth factor: key cytokines in scleroderma pathogenesis. Curr Opin Rheumatol 13:505–511CrossRefGoogle Scholar
  16. Denton CP, Black CM (2005) Targeted therapy comes of age in scleroderma. Trends Immunol 26:596–602CrossRefGoogle Scholar
  17. Feng QL, Li HB, Cui FZ, Li HD, Kim TN (1999) Crystal orientation domains found in the single lamina in nacre of the Mytilus edulis shell. J Mater Sci Lett 18:1547–1549CrossRefGoogle Scholar
  18. Gillies RJ, Didier N, Denton M (1986) Determination of cell number in monolayer cultures. Anal Biochem 159:109–113CrossRefGoogle Scholar
  19. Grazul-Bilska AT, Johnson ML, Bilski JJ, Redmer DA, Reynolds LP, Abdullah A, Abdullah KM (2003) Wound healing: the role of growth factor. Drugs Today 39:787–800CrossRefGoogle Scholar
  20. Jackson DJ, Mann K, Häussermann V, Schilhabel MB, Lüter C, Griesshaber E, Schmahl W, Wörheide G (2015) The Magellania venosa biomineralizing proteome: a window into brachiopod shell evolution. Genome Biol Evol 24:1349–1362CrossRefGoogle Scholar
  21. Jian-Ping D, Jun C, Yu-Fei B, Bang-Xing H, Shang-Bin G, Li-Li J (2010) Effects of pearl powder extract and its fractions on fibroblast function relevant to wound repair. Pharm Biol 48:122–127CrossRefGoogle Scholar
  22. Kaplan DL (1998) Mollusc shell structures: novel design strategies for synthetic materials. Curr Opin Solid State Mater Sci 3:232–236CrossRefGoogle Scholar
  23. Kueng W, Silber E, Eppenberger U (1989) Quantification of cells cultured on 96-well plates. Anal Biochem 182:16–19CrossRefGoogle Scholar
  24. Lamghari M, Berland S, Laurent A, Huet H, Lopez E (2001) Bone reactions to nacre injected percutaneously into the vertebrae of sheep. Biomaterials 22:555–562CrossRefGoogle Scholar
  25. Latire T, Legendre F, Bigot N, Carduner L, Kellouche S, Bouyoucef M, Carreiras F, Marin F, Lebel JM, Galera P, Serpentini A (2014) Shell extracts from the marine bivalve Pecten maximus regulate the synthesis of extracellular matrix in primary cultured human skin fibroblasts. PLoS ONE 9:e99931CrossRefGoogle Scholar
  26. Lee SW, Choi CS (2007) The correlation between organic matrices and biominerals (myostracal prism and folia) of the adult oyster shell, Crassostrea gigas. Micron 38:58–64CrossRefGoogle Scholar
  27. Lee K, Kim H, Kim JM, Chung YH, Lee TY, Lim HS, Lim JH, Kim T, Bae JS, Woo CH, Kim KJ, Jeong D (2011) Nacre-driven water-soluble factors promote wound healing of the deep burn porcine skin by recovering angiogenesis and fibroblast function. Mol Biol Rep 39:3211–3218CrossRefGoogle Scholar
  28. Legendre F, Dudhia J, Pujol JP, Bogdanowicz P (2003) Jak/STAT but not ERK1/ERK2 pathway mediates interleukin (IL-)-6/soluble IL-6R down regulation of type II collagen, aggrecan core, and link protein transcription in articular chondrocytes. Association with a down-regulation of SOX9 expression. J Biol Chem 278:2903–2912CrossRefGoogle Scholar
  29. Liao H, Mutvei H, Hammarström L, Wurtz T, Li J (2002) Tissue responses to nacreous implants in rat femur: an in situ hybridization and histochemical study. Biomaterials 23:2693–2701CrossRefGoogle Scholar
  30. Liu YC, Uchiyama K, Natsui N, Hasegawa Y (2002) In vitro activities of the components from scallop shells. Fish Sci 68:1330–1336CrossRefGoogle Scholar
  31. Liu YC, Torita A, Hasegawa Y (2006) Scallop shell extract promotes recovery from UV-B induced damage in rat skin epidermal layer. Fish Sci 72:388–392CrossRefGoogle Scholar
  32. Lopez E, Vidal B, Berland S, Camprasse S, Camprasse G, Silve C (1992) Demonstration of the capacity of nacre to induce bone formation by human osteoblasts maintained in vitro. Tissue Cell 24:667–679CrossRefGoogle Scholar
  33. Lopez E, Le Faou A, Borzeix S, Berland S (2000) Stimulation of rat cutaneous fibroblasts and their synthetic activity by implants of powdered nacre (mother of pearl). Tissue Cell 32:95–101CrossRefGoogle Scholar
  34. Lowenstam H, Weiner S (1989) On biomineralisation. Oxford University Press, New YorkGoogle Scholar
  35. Marie B, Le Roy N, Zanella-Cléon I, Becchi M, Marin F (2011a) Molecular evolution of mollusc shell proteins: insights from proteomic analysis of the edible mussel Mytilus. J Mol Evol 72:531–546CrossRefGoogle Scholar
  36. Marie B, Zanella-Cléon I, Guichard N, Becchi M, Marin F (2011b) Novel proteins from the calcifying shell matrix of the Pacific oyster Crassostrea gigas. Mar Biotechnol 13:1159–1168CrossRefGoogle Scholar
  37. Marin F, Amons R, Guichard N, Stigter M, Hecker A, Luquet G, Layrolle P, Alcaraz G, Riondet C, Westbroeck P (2005) Caspartin and calprismin, two proteins of the shell calcitic prisms of the Mediterranean fan mussel Pinna nobilis. J Biol Chem 280:33895–33908CrossRefGoogle Scholar
  38. Marin F, Le Roy N, Marie B (2012) The formation and mineralization of mollusk shell. Front Biosci S4:1099–1125CrossRefGoogle Scholar
  39. Milet C, Berland S, Lamghari M, Mouries L, Jolly C, Borzeix S, Doumenc D, Lopez E (2004) Conservation of signal molecules involved in biomineralisation control in calcifying matrices of bone and shell. C R Palevol 3:493–501CrossRefGoogle Scholar
  40. Mimura Y, Ihn H, Jinnin M, Asano Y, Yamane K, Tamaki K (2006) Epidermal growth factor affects the synthesis and degradation of type I collagen in cultured human dermal fibroblasts. Matrix Biol 25:202–212CrossRefGoogle Scholar
  41. Moinzadeh P, Denton CP, Abraham D, Ong V, Hunzelmann N, Eckes B, Krieg T (2012) Biomarkers for skin involvement and fibrotic activity in scleroderma. J Eur Acad Dermatol Venereol 26:267–276CrossRefGoogle Scholar
  42. Mutvei H (1972) Formation of nacreous and prismatic layers in Mytilus edulis L. (Lamellibranchiata). Biomineralization 6:96–100Google Scholar
  43. Oliveira DV, Silva TS, Cordeiro OD, Cavaco SI, Simes DC (2012) Identification of proteins with potential osteogenic activity present in the water-soluble matrix proteins from Crassostrea gigas nacre using a proteomic approach. Sci World J 2012:765909Google Scholar
  44. Perreira-Mouriès L, Almeida MJ, Milet C, Berland S, Lopez E (2002a) Bioactivity of nacre water-soluble organic matrix from the bivalve mollusc Pinctada maxima in three mammalian cell types: fibroblasts, bone marrow stromal cells and osteoblasts. Comp Biochem Physiol B 132:217–229CrossRefGoogle Scholar
  45. Perreira-Mouriès L, Almeida MJ, Ribeiro C, Peduzzi J, Barthélemy M, Milet C, Lopez E (2002b) Soluble silk-like organic matrix in the nacreous layer of the bivalve Pinctada maxima. Eur J Biochem 269:4994–5003CrossRefGoogle Scholar
  46. Peuster M, Fink C, von Scnakenburg C (2003) Biocompatibility of corroding tungsten coils: in vitro assessment of degradation kinetics and cytotoxicity on human cells. Biomaterials 24:4057–4061CrossRefGoogle Scholar
  47. Ravanti L, Kähäri VM (2000) Matrix metalloproteinases in wound repair. Int J Mol Med 6:391–407Google Scholar
  48. Rousseau M, Perreira-Mouriès L, Almeida MJ, Milet C, Lopez E (2003) The water-soluble matrix fraction from the nacre of Pinctada maxima produces earlier mineralization of MC3T3-E1 mouse pre-osteoblats. Comp Biochem Physiol B 135:1–7CrossRefGoogle Scholar
  49. Rousseau M, Bédouet L, Lati E, Gasser P, Le Ny K, Lopez E (2006) Restoration of stratum corneum with nacre lipids. Comp Biochem Physiol 145:1–9CrossRefGoogle Scholar
  50. Rousseau M, Boulzaguet H, Biagianti J, Duplat D, Milet C, Lopez E, Bédouet L (2008) Low molecular weight molecules of oyster nacre induce mineralization of the MC3T3-E1 cells. J Biomed Mater Res A 85:487–497CrossRefGoogle Scholar
  51. Shen Y, Zhu J, Zhang H, Zhao F (2006) In vitro osteogenetic activity of pearl. Biomaterials 27:281–287CrossRefGoogle Scholar
  52. Taylor JD, Kennedy WJ, Hall A (1969) The shell structure and mineralogy of the Bivalvia. Introduction. Nuculacea–Trigonacea. Bull Br Mus Nat Hist (Zool) 3:3–125Google Scholar
  53. Torita A, Miyamoto A, Hasegawa Y (2007) The effects of scallop shell extract on collagen synthesis. Fish Sci 73:1388–1394Google Scholar
  54. Velten E, Müller M, Tull R, Breme J (2004) Biocompatibility of b-stabilizing elements of titanium alloys. Biomaterials 25:5705–5713CrossRefGoogle Scholar
  55. Westbroek P, Marin F (1998) A marriage of bone and nacre. Nature 392:861–862CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Thomas Latire
    • 1
    • 2
    • 3
  • Florence Legendre
    • 1
    • 3
  • Mouloud Bouyoucef
    • 1
    • 3
  • Frédéric Marin
    • 4
  • Franck Carreiras
    • 5
  • Muriel Rigot-Jolivet
    • 6
  • Jean-Marc Lebel
    • 1
    • 2
  • Philippe Galéra
    • 1
    • 3
  • Antoine Serpentini
    • 1
    • 2
    Email author
  1. 1.Normandie UniversitéCaenFrance
  2. 2.UMR BOREA «Biologie des ORganismes et Ecosystèmes Aquatiques», MNHN, UPMC, UCBN, CNRS-7208, IRD-207, SFR 4206 ICOREUniversité de Caen NormandieCaen Cedex 5France
  3. 3.Laboratoire Microenvironnement cellulaire et pathologies (MILPAT), EA 4652 and Biotargen EA7450, SFR 4206 ICORE, Faculté de MédecineUniversité de Caen NormandieCaen Cedex 5France
  4. 4.UMR 6282 CNRS “Biogéosciences”Université de Bourgogne Franche-Comté (UBFC)DijonFrance
  5. 5.Equipe de Recherche sur les Relations Matrice Extracellulaire Cellules (ERRMECe), EA 1391, Institut des MatériauxUniversité de Cergy-PontoiseCergy-Pontoise CedexFrance
  6. 6.Department of Plastic and Reconstructive SurgerySt-Martin ClinicCaenFrance

Personalised recommendations