, Volume 69, Issue 4, pp 591–600 | Cite as

Apoptosis-inducing ability of silver(I) cyanide-phosphines useful for anti-cancer studies

  • Zelinda Human-Engelbrecht
  • Reinout Meijboom
  • Marianne J. CronjéEmail author
Original Article


Metal-based drugs have shown early promise as anticancer agents suggesting the potential application of silver(I) complexes as apoptosis-inducing agents. The ability of a silver(I) cyanide containing phosphine complex to induce cell death was evaluated in both a malignant (SNO esophageal cancer) and non-malignant (HDF-a skin and HEK293 kidney) cell lines. A dose-dependent decrease in cell viability was observed in the SNO cells. Light microscopy revealed morphological features indicative of apoptotic cell death. The mode of cell death was confirmed as apoptosis by phosphatidylserine externalization, DNA fragmentation and nuclear condensation. Furthermore, both the non-malignant cell lines showed morphological features indicative of apoptosis when exposed to complex 1. We propose the use of this silver(I) cyanide phosphine complex as an highly effective positive apoptosis control for use in anticancer studies of phosphine complexes.


Silver(I) phosphine complex Apoptosis Cyanide containing complex Malignant cells Anticancer 



The authors gratefully acknowledge Dr. Rehana Malgas-Enus for the synthesis and characterization of complex 1. This work was performed for the partial fulfillment for the requirements for a Ph.D. thesis of Ms Engelbrecht within the graduate program of Biochemistry at the University of Johannesburg. The authors also gratefully acknowledge financial assistance from the University of Johannesburg. This work is based on the research supported in part by the National Research Foundation of South Africa (Grant specific unique reference number (UID) 83863). The Spectrum facility at the University of Johannesburg is acknowledged for the use of the NMR spectrometer and FACSAria flow cytometer.


  1. American Cancer Society (2016) Cancer Facts & Figures 2016. American Cancer Society, AtlantaGoogle Scholar
  2. Berners-Price SJ, Sadler PJ (1988) Phosphines and metal phosphine complexes: relationship of chemistry to anticancer and other biological activity. Struct Bond 70:27–102CrossRefGoogle Scholar
  3. Bey E, Alexander J, Whitcutt JM, Hunt JA, Gear JHS (1976) Carcinoma of the esophagus in Africans: establishment of continuously growing cell line from a tumour specimen. In Vitr Plant 12:107–114CrossRefGoogle Scholar
  4. Bruijnincx PCA, Sadler PJ (2008) New trends for metal complexes with anticancer activity. Curr Opin Chem Biol 12:97–206CrossRefGoogle Scholar
  5. De Pas T, de Braud F, Mandala M, Curigliano G, Catania C, Ferretti G, Sozzi P, Solli P, Goldhirsch A (2001) Cisplatin and vinorelbine as second-line chemotherapy in patients with advanced non-small cell lung cancer (NSCLC) resistant to taxol plus gemcitabine. Lung Cancer 31:267–270CrossRefGoogle Scholar
  6. Ferreira E, Munyaneza A, Omondi B, Meijboom R, Cronjé MJ (2015) The effect of 1:2 Ag(I) thiocyanate complexes in MCF-7 breast cancer cells. Biometals 28:765–781. doi: 10.1007/s10534-015-9865-5 CrossRefGoogle Scholar
  7. Festjens N, van den Berghe T, Vandenabeele P (2006) Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochim Biophys Acta 1757:1371–1387CrossRefGoogle Scholar
  8. Guo Z, Sadler PJ (1999) Medicinal inorganic chemistry. Adv Inorg Chem 49:183–306CrossRefGoogle Scholar
  9. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674CrossRefGoogle Scholar
  10. Hartinger CG, Dyson PJ (2009) Bio-organometallic chemistry from teaching paradigms to medicinal applications. Chem Soc Rev 38:391–401CrossRefGoogle Scholar
  11. Hrubisko M, McGown AT, Fox BW (1993) The role of metallothionein, glutathione, glutathione S-transferases and DNA repair in resistance to platinum drugs in a series of L1210 cell lines made resistant to anticancer platinum agents. Biochem Pharmacol 54:435–442Google Scholar
  12. Human Z, Munyaneza A, Omondi B, Meijboom R, Cronjé MJ (2015) The induction of cell death by phosphine silver(I) thiocyanate complexes in SNO-esophageal cancer cells. Biometals 28:219–228. doi: 10.1007/s10534-014-9817-5 CrossRefGoogle Scholar
  13. Kartalou M, Essigmann JM (2001) Mechanisms of resistance to cisplatin. Mutat Res 478:23–43CrossRefGoogle Scholar
  14. Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide ranging implications in tissue kinetics. Br J Cancer 26:239–257CrossRefGoogle Scholar
  15. Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MW, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nuñez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G (2009) Classification of cell death: recommendations of nomenclature committee on cell death 2009. Cell Death Differ 16:3–11CrossRefGoogle Scholar
  16. Kyros L, Kourkoumelis N, Kubick M, Male L, Hursthouse MB, Verginadis II, Gouma E, Karkabounas S, Charalabopoulos K, Hadjikakou SK (2010) Structural properties, cytotoxicity, and anti-inflammatory activity of silver (I) complexes with tris (p-tolyl) phosphine and 5-chloro-2-mercaptobenzothiazole. Bioinorg Chem Appl 386860. doi: 10.1155/2010/386860
  17. Kyros L, Banti CN, Kourkoumelis N, Kubicki M, Sainis I, Hadjikakou SK (2014) Synthesis, characterization, and binding properties towards CT-DNA and lipoxygenase of mixed-ligand silver(I) complexes with 2-mercaptothiazole and its derivatives and triphenylphosphine. J Biol Inorg Chem 19:449–464. doi: 10.1007/s00775-014-1089-6 CrossRefGoogle Scholar
  18. Liu JJ, Galettis P, Farr A, Maharaj L, Samarasinha H, McGechan AC, Baguley BC, Bowen RJ, Berners-Price SJ, McKeage MJ (2008) In vitro antitumour and hepatotoxicity profiles of Au(I) and Ag(I) bidentate pyridyl phosphine complexes and relationships to cellular uptake. J Inorg Biochem 102:303–310CrossRefGoogle Scholar
  19. McKeage MJ, Papathanasiou P, Salem G, Sjaarda A, Swiegers GF, Waring P, Wild SB (1998) Antitumor activity of gold(I), silver(I) and copper(I) complexes containing chiral tertiary phosphines. Met Based Drugs 5:217–223CrossRefGoogle Scholar
  20. Meggers E (2007) Exploring biologically relevant chemical space with metal complexes. Curr Opin Chem Biol 11:287–292CrossRefGoogle Scholar
  21. Meijboom R, Bowen RJ, Berners-Price SJ (2009) Coordination complexes of silver(I) with tertiary phosphine and related ligands. Coord Chem Rev 253:325–342CrossRefGoogle Scholar
  22. Muetterties EL, Alegranti CW (1972) Solution structure and kinetic study of metal-phosphines and-phosphite complexes. I. The silver(I) system. J Am Chem Soc 94:6386–6391CrossRefGoogle Scholar
  23. O’Dwyer PJ, Stevenson JP, Johnson SW (1999) Clinical status of cisplatin, carboplatin, and other platinum-based antitumor drugs. Wiley-VCH, Switzerland, pp 31–69Google Scholar
  24. Ott I, Gust R (2007) Non platinum metal complexes as anti-cancer agents. Arch Pharm 340:117–126CrossRefGoogle Scholar
  25. Page R, Takimoto C (2004) Cancer management: a multidisciplinary approach: medical, surgical and radiation oncology. Principles of chemotherapy, 8th ed. PPR, New York, pp 21–38Google Scholar
  26. Papathanasiou P, Salem G, Waring P, Willis AC (1997) Synthesis of gold(I), silver(I) and copper(I) complexes containing substituted (2-aminophenyl)phosphines. Molecular structures of [AuI(2-H2NC6H4PPh2)], [AuI{(±)-2-H2NC6H4PMePh}] and (±)-[Cu(2-H2NC6H4PPh2)2];PF6. J Chem Soc, Dalton Trans 19:3435–3443CrossRefGoogle Scholar
  27. Potgieter K, Cronjé MJ, Meijboom R (2015) Synthesis and characterization of silver(I) benzyldihenylphosphine complexes: towards the biological evaluation of SNO cells. Inorg Chim Acta 437:195–200CrossRefGoogle Scholar
  28. Poyraz M, Banti CN, Kourkoumelis N, Dokorou V, Manos MJ, Simčič M, Golič-Grdadolnik S, Mavromoustakos T, Giannoulis AD, Verginadis II, Charalabopoulos K, Hadjikakou SK (2011) Synthesis, structural characterization and biological studies of novel mixed ligand Ag(I) complexes with triphenylphosphine and aspirin or salicylic acid. Inorg Chim Acta 375:114–121CrossRefGoogle Scholar
  29. Reed E, Dabholkar M, Chabner BA (1996) Platinum analogues. In: Chabner BA, Longo DL (eds) Cancer chemotherapy and biotherapy: principles and practice, 2nd edn. Lippincott-Raven Publishers, Philadelphia, pp 357–378Google Scholar
  30. Romualdo LL, Bessler KE, Deflon VM (2002) Zum Koordinationsverhalten der phenylhydrazonpropandinitrile: darstellung und strukturelle charakterisierung von Silber(I)-Komplexen. Z Anorg Allg Chem 628:1098–1103CrossRefGoogle Scholar
  31. Rosenberg B (1971) Some biological effects of platinum compounds. Platin Met Rev 15:42–51Google Scholar
  32. Rosenberg B, Van Camp L, Trosko JE, Mansour VH (1969) Platinum compounds: a new class of potent antitumour agents. Nature 222:385–386CrossRefGoogle Scholar
  33. Sulaiman NI, Salimin NR, Haque RA, Iqbal MA, Ng SW, Razali MR (2015) Synthesis, spectroscopic characterization, single crystal X-ray determination and cytotoxicity activity against human breast cancer (MCF-7) and colon cancer (HCT 116) cell lines of silver(I) coordination polymer. Polyhedron 97:188–196CrossRefGoogle Scholar
  34. Tagliabue G, Pifferi A, Balconi G, Mascellani E, Geroni C, D’Incali M, Ubezio P (1993) Intracellular glutathione heterogeneity in L1210 murine leukaemia sublines made resistant to DNA-interacting anti-neoplastic agents. Int J Cancer 54:435–442CrossRefGoogle Scholar
  35. Vaughn DJ, Malkowicz SB (2001) Recent development in chemotherapy for bladder cancer. Oncology 15:763–780Google Scholar
  36. Yilmaz VT, Gocmen E, Icsel C, Cengiz M, Susluer SY, Buyukgungor O (2014) Synthesis, crystal structures, in vitro DNA binding, antibacterial and cytotoxic activities of new di- and polynuclear silver(I) saccharinate complexes with tertiary monophosphanes. J Photochem Photobiol B: Biol 131:31–42CrossRefGoogle Scholar
  37. Zartilas S, Hadjikakou SK, Hadjiliadis N, Kourkoumelis N, Kyros L, Kubicki M, Baril M, Butler IS, Karkabounas S, Balzarini J (2009) Tetrameric 1:1 and monomeric 1:3 complexes of silver(I) halides with tri(p-tolyl)-phosphine: a structural and biological study. Inorg Chim Acta 362:1003–1010CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Zelinda Human-Engelbrecht
    • 1
  • Reinout Meijboom
    • 2
  • Marianne J. Cronjé
    • 1
    Email author
  1. 1.Department of BiochemistryUniversity of JohannesburgAuckland Park, JohannesburgSouth Africa
  2. 2.Research Centre for Synthesis and Catalysis, Department of ChemistryUniversity of JohannesburgAuckland Park, JohannesburgSouth Africa

Personalised recommendations