Skip to main content

Advertisement

Log in

Native matrix-based human lung alveolar tissue model in vitro: studies of the reparatory actions of mesenchymal stem cells

  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Studies of lung diseases in vitro often rely on flat, plastic-based monocultures, due to short lifespan of primary cells, complicated anatomy, lack of explants, etc. We hereby present a native 3D model with cues for repopulating epithelial cells. Abilities of mesenchymal stem cells (MSC) to modulate bacterial lipopolysaccharide (LPS) and cigarette smoke-induced injury to pulmonary epithelium were tested in our model. Post-mortem human lung tissue was sliced, cut and decellularized. Resulting matrix pads were reseeded with pulmonary epithelium (A549 line). Markers of the layer integrity and certain secreted proteins in the presence of cigarette smoke extract (CSE) and LPS were assessed via Western blot, ELISA and RT-PCR assays. In parallel, the effects of MSC paracrine factors on exposed epithelial cells were also investigated at gene and protein levels. When cultured on native 3D matrix, A549 cells obtain dual, type I- and II-like morphology. Exposure to CSE and LPS leads to downregulation of several epithelial proteins and suppressed proliferation rate. MSC medium added to the model restores proliferation rate and some of the epithelial proteins, i.e. e-cadherin and beta-catenin. CSE also increases secretion of pro-inflammatory cytokines by epithelial cells and upregulates transcription factor NFκB. Some of these effects might be counteracted by MSC in our model. We introduce repopulated decellularized lung matrix that highly resembles in vivo situation and is convenient for studies of disease pathogenesis, cytotoxicology and for exploring therapeutic strategies in the human lung context in vitro. MSC paracrine products have produced protecting effects in our model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aikawa Y, Yamamoto M, Yamamoto T et al (2002) An anti-rheumatic agent T-614 inhibits NF-kappaB activation in LPS- and TNF-alpha-stimulated THP-1 cells without interfering with IkappaBalpha degradation. Inflamm Res 51:188–194

    Article  CAS  Google Scholar 

  • Aldonyte R, Eriksson S, Piitulainen E et al (2004) Analysis of systemic biomarkers in COPD patients. COPD 1:155–164

    Article  Google Scholar 

  • Aldonyte R, Hutchinson TE, Jin B et al (2008) Endothelial alpha-1-antitrypsin attenuates cigarette smoke induced apoptosis in vitro. COPD 5:153–162

    Article  Google Scholar 

  • Baeza-Squiban A, Bonvallot V, Boland S, Marano F (1999) Airborne particles evoke an inflammatory response in human airway epithelium. Activation of transcription factors. Cell Biol Toxicol 15:375–380

    Article  CAS  Google Scholar 

  • Barkauskas CE, Cronce MJ, Rackley CR, Bowie EJ, Keene DR, Stripp BR, Randell SH, Noble PWHB (2013) Type 2 alveolar cells are stem cells in adult lung. J Clin Invest 123:3025–3036. doi:10.1172/JCI68782DS1

    Article  CAS  Google Scholar 

  • Barnes PJ, Shapiro SD, Pauwels RA (2003) Chronic obstructive pulmonary disease: molecular and cellular mechanisms. Eur Respir J 22:672–688. doi:10.1183/09031936.03.00040703

    Article  CAS  Google Scholar 

  • Booth AJ, Hadley R, Cornett AM et al (2012) Acellular Normal and Fibrotic Human Lung Matrices as a Culture System for In Vitro Investigation. Am. J. Respir. Crit. Care Med. Am J Respir Crit Care Med 186814:866–876

    Article  Google Scholar 

  • Braber S, Koelink PJ, Henricks PAJ et al (2011) Cigarette smoke-induced lung emphysema in mice is associated with prolyl endopeptidase, an enzyme involved in collagen breakdown. Am J Physiol Lung Cell Mol Physiol 300:L255–L265. doi:10.1152/ajplung.00304.2010

    Article  CAS  Google Scholar 

  • Carbone A, Castellani S, Favia M et al (2014) Correction of defective CFTR/ENaC function and tightness of cystic fibrosis airway epithelium by amniotic mesenchymal stromal (stem) cells. J Cell Mol Med 18:1631–1643. doi:10.1111/jcmm.12303

    Article  CAS  Google Scholar 

  • Cario E, Rosenberg IM, Brandwein SL et al (2000) Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J Immunol 164:966–972

    Article  CAS  Google Scholar 

  • Chen Y, Xiang LX, Shao JZ et al (2010) Recruitment of endogenous bone marrow mesenchymal stem cells towards injured liver. J Cell Mol Med 14:1494–1508. doi:10.1111/j.1582-4934.2009.00912.x

    Article  Google Scholar 

  • Cosio MG, Majo J, Cosio MG (2002) Inflammation of the Airways and Lung Parenchyma in COPD * : Role of T Cells Inflammation of the Airways and Lung Parenchyma in COPD * Role of T Cells. 4–9. doi: 10.1378/chest.121.5

  • Crosby LM, Waters CM (2010) Epithelial repair mechanisms in the lung. Am J Physiol Lung Cell Mol Physiol 298:L715–L731. doi:10.1152/ajplung.00361.2009

    Article  CAS  Google Scholar 

  • Flozak AS, Lam AP, Russell S et al (2010) Beta-catenin/T-cell factor signaling is activated during lung injury and promotes the survival and migration of alveolar epithelial cells. J Biol Chem 285:3157–3167. doi:10.1074/jbc.M109.070326

    Article  CAS  Google Scholar 

  • Forbes LJL, Kapetanakis V, Rudnicka AR et al (2009) Chronic exposure to outdoor air pollution and lung function in adults. Thorax 64:657–663. doi:10.1136/thx.2008.109389

    Article  CAS  Google Scholar 

  • Frey EA, Miller DS, Jahr TG et al (1992) Soluble CD14 participates in the response of cells to lipopolysaccharide. J Exp Med 176:1665–1671

    Article  CAS  Google Scholar 

  • Greenlee KJ, Werb Z, Kheradmand F (2007) Matrix metalloproteinases in lung: multiple, multifarious, and multifaceted. Physiol Rev 87:69–98. doi:10.1152/physrev.00022.2006

    Article  CAS  Google Scholar 

  • Griesenbach U, Scheid P, Hillery E et al (2000) Anti-inflammatory gene therapy directed at the airway epithelium. Gene Ther 7:306–313. doi:10.1038/sj.gt.3301078

    Article  CAS  Google Scholar 

  • Gupta N, Su X, Popov B et al (2007) Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol 179:1855–1863

    Article  CAS  Google Scholar 

  • Hailman E, Lichenstein HS, Wurfel MM et al (1994) Lipopolysaccharide (LPS)-binding protein accelerates the binding of LPS to CD14. J Exp Med 179:269–277

    Article  CAS  Google Scholar 

  • Hill RC, Calle EA, Dzieciatkowska M et al (2015) Quantification of extracellular matrix proteins from a rat lung scaffold to provide a molecular readout for tissue engineering. Mol Cell Proteomics 14:961–973. doi:10.1074/mcp.M114.045260

    Article  CAS  Google Scholar 

  • Hopkinson NS, Polkey MI (2015) Chronic obstructive pulmonary disease in non-smokers. Lancet 374:1964. doi:10.1016/S0140-6736(09)62115-2

    Article  Google Scholar 

  • Hoshino Y, Mio T, Nagai S et al (2001) Cytotoxic effects of cigarette smoke extract on an alveolar type II cell-derived cell line. Am J Physiol Lung Cell Mol Physiol 281:L509–L516

    CAS  Google Scholar 

  • Huh D, Matthews BD, Mammoto A et al (2010) Reconstituting Organ-Level Lung Functions on a Chip. Science 328:1662–1668. doi:10.1126/science.1188302

    Article  CAS  Google Scholar 

  • Itoh T, Matsuda H, Tanioka M et al (2002) The role of matrix metalloproteinase-2 and matrix metalloproteinase-9 in antibody-induced arthritis. J Immunol 169:2643–2647

    Article  CAS  Google Scholar 

  • Kasper M, Huber O, Grossmann H et al (1995) Immunocytochemical distribution of E-cadherin in normal and injured lung tissue of the rat. Histochem Cell Biol 104:383–390

    Article  CAS  Google Scholar 

  • Khubchandani KR, Snyder JM (2001) Surfactant protein A (SP-A): the alveolus and beyond. FASEB J Off Publ Fed Am Soc Exp Biol 15:59–69. doi:10.1096/fj.00-0318rev

    CAS  Google Scholar 

  • Krimmer DI, Oliver BGG (2011) What can in vitro models of COPD tell us? Pulm Pharmacol Ther 24:471–477. doi:10.1016/j.pupt.2010.12.002

    Article  CAS  Google Scholar 

  • Lannan S, Donaldson K, Brown D, MacNee W (1994) Effect of cigarette smoke and its condensates on alveolar epithelial cell injury in vitro. Am J Physiol 266:L92–100

    CAS  Google Scholar 

  • Leanderson P, Tagesson C (1992) Cigarette smoke-induced DNA damage in cultured human lung cells: role of hydroxyl radicals and endonuclease activation. Chem Biol Interact 81:197–208

    Article  CAS  Google Scholar 

  • Lee JW, Fang X, Gupta N et al (2009) Allogeneic human mesenchymal stem cells for treatment of E. coli endotoxin-induced acute lung injury in the ex vivo perfused human lung. Proc Natl Acad Sci U S A 106:16357–16362. doi:10.1073/pnas.0907996106

    Article  CAS  Google Scholar 

  • Legrand C, Gilles C, Zahm JM et al (1999) Airway epithelial cell migration dynamics. MMP-9 role in cell-extracellular matrix remodeling. J Cell Biol 146:517–529

    Article  CAS  Google Scholar 

  • Lopez AD, Shibuya K, Rao C et al (2006) Chronic obstructive pulmonary disease: current burden and future projections. Eur Respir J 27:397–412. doi:10.1183/09031936.06.00025805

    Article  CAS  Google Scholar 

  • Mahadeva R, Shapiro SD (2002) Chronic obstructive pulmonary disease * 3: experimental animal models of pulmonary emphysema. Thorax 57:908–914

    Article  CAS  Google Scholar 

  • Mishra DK, Thrall MJ, Baird BN et al (2012) Human lung cancer cells grown on acellular rat lung matrix create perfusable tumor nodules. Ann Thorac Surg 93:1075–1081. doi:10.1016/j.athoracsur.2012.01.011

    Article  Google Scholar 

  • O’Neill JD, Anfang R, Anandappa A et al (2013) Decellularization of Human and Porcine Lung Tissues for Pulmonary Tissue Engineering. Ann Thorac Surg 96:1046–1056. doi:10.1016/j.athoracsur.2013.04.022

    Article  Google Scholar 

  • Ojo O, Lagan AL, Rajendran V et al (2014a) Pathological changes in the COPD lung mesenchyme–novel lessons learned from in vitro and in vivo studies. Pulm Pharmacol Ther 29:121–128. doi:10.1016/j.pupt.2014.04.004

    Article  CAS  Google Scholar 

  • Ojo O, Lagan AL, Rajendran V et al (2014b) Pathological changes in the COPD lung mesenchyme - Novel lessons learned from in??vitro and in??vivo studies. Pulm Pharmacol Ther. doi:10.1016/j.pupt.2014.04.004

    Google Scholar 

  • Ott HC, Clippinger B, Conrad C et al (2010) Regeneration and orthotopic transplantation of a bioartificial lung. Nat Med 16:927–933

    Article  CAS  Google Scholar 

  • Overbeek SA, Braber S, Koelink PJ et al (2013) Cigarette smoke-induced collagen destruction; key to chronic neutrophilic airway inflammation? PLoS ONE 8:e55612. doi:10.1371/journal.pone.0055612

    Article  CAS  Google Scholar 

  • Petersen TH, Calle EA, Zhao L et al (2010) Tissue-Engineered Lungs for in Vivo Implantation. Science 329:538–541. doi:10.1126/science.1189345

    Article  CAS  Google Scholar 

  • Phillips BE, Cancel L, Tarbell JM, Antonetti DA (2008) Occludin independently regulates permeability under hydrostatic pressure and cell division in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 49:2568–2576. doi:10.1167/iovs.07-1204

    Article  Google Scholar 

  • Rokadia HK, Agarwal S (2012) Serum cystatin C and emphysema: results from the National Health and Nutrition Examination Survey (NHANES). Lung 190:283–290. doi:10.1007/s00408-012-9374-z

    Article  CAS  Google Scholar 

  • Sachse F, Von Eiff C, Stoll W et al (2006) Induction of CXC chemokines in A549 airway epithelial cells by trypsin and staphylococcal proteases—a possible route for neutrophilic inflammation in chronic rhinosinusitis. Clin Exp Immunol 144:534–542. doi:10.1111/j.1365-2249.2006.03089.x

    Article  CAS  Google Scholar 

  • Sakagami M (2006) In vivo, in vitro and ex vivo models to assess pulmonary absorption and disposition of inhaled therapeutics for systemic delivery. Adv Drug Deliv Rev 58:1030–1060. doi:10.1016/j.addr.2006.07.012

    Article  CAS  Google Scholar 

  • Shiozaki A, Bai X, Shen-Tu G et al (2012) Claudin 1 mediates TNFalpha-induced gene expression and cell migration in human lung carcinoma cells. PLoS ONE 7:e38049. doi:10.1371/journal.pone.0038049

    Article  CAS  Google Scholar 

  • Sueblinvong V, Weiss DJ (2010) Stem Cells and Cell Therapy Approaches in Lung Biology and Diseases. Transl Res 156:188–205. doi:10.1016/j.trsl.2010.06.007

    Article  CAS  Google Scholar 

  • Swain RJ, Kemp SJ, Goldstraw P et al (2010) Assessment of Cell Line Models of Primary Human Cells by Raman Spectral Phenotyping. Biophys J 98:1703–1711

    Article  CAS  Google Scholar 

  • Sze MA, Dimitriu PA, Hayashi S et al (2012) The lung tissue microbiome in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 185:1073–1080. doi:10.1164/rccm.201111-2075OC

    Article  Google Scholar 

  • Tsutsumi-Ishii Y, Nagaoka I (2003) Modulation of Human β-Defensin-2 Transcription in Pulmonary Epithelial Cells by Lipopolysaccharide-Stimulated Mononuclear Phagocytes Via Proinflammatory Cytokine Production. J Immunol 170:4226–4236. doi:10.4049/jimmunol.170.8.4226

    Article  CAS  Google Scholar 

  • Ulevitch RJ, Tobias PS (1995) Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol 13:437–457. doi:10.1146/annurev.iy.13.040195.002253

    Article  CAS  Google Scholar 

  • Van Haaften T, Byrne R, Bonnet S et al (2009) Airway delivery of mesenchymal stem cells prevents arrested alveolar growth in neonatal lung injury in rats. Am J Respir Crit Care Med 180:1131–1142. doi:10.1164/rccm.200902-0179OC

    Article  Google Scholar 

  • Victoni T, Gleonnec F, Lanzetti M et al (2014) Roflumilast N-oxide prevents cytokine secretion induced by cigarette smoke combined with LPS through JAK/STAT and ERK1/2 inhibition in airway epithelial cells. PLoS ONE 9:e85243. doi:10.1371/journal.pone.0085243

    Article  Google Scholar 

  • Wagner DE, Bonenfant NR, Parsons C et al (2014) Comparative Decellularization and Recellularization of Normal versus Emphysematous Human Lungs. Biomaterials 35:3281–3297. doi:10.1016/j.biomaterials.2013.12.103

    Article  CAS  Google Scholar 

  • Weiss DJ, Casaburi R, Flannery R et al (2013) A placebo-controlled, randomized trial of mesenchymal stem cells in COPD. Chest 143:1590–1598. doi:10.1378/chest.12-2094

    Article  CAS  Google Scholar 

  • Wolf M, Clark-Lewis I, Buri C et al (2003) Cathepsin D Specifically Cleaves the Chemokines Macrophage Inflammatory Protein-1α, Macrophage Inflammatory Protein-1β, and SLC That Are Expressed in Human Breast Cancer. Am J Pathol 162:1183–1190

    Article  CAS  Google Scholar 

  • Wollmer P, Evander E (1994) Biphasic pulmonary clearance of 99mTc-DTPA in smokers. Clin Physiol 14:547–559

    Article  CAS  Google Scholar 

  • Zu Y-F, Wang X-C, Chen Y et al (2012) Thyroid transcription factor 1 represses the expression of Ki-67 and induces apoptosis in non-small cell lung cancer. Oncol Rep 28:1544–1550. doi:10.3892/or.2012.2009

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. A. Rimkevicius for the assistance with post-mortem lung tissue collection, colleagues at National Center of Pathology, at Vilnius University Hospital Santariskiu Clinic for the excellent immunohistochemistry work and surgeons at the Dept. of Traumatology at the Republic Hospital of Vilnius University for their help with bone marrow collection.

Funding

This work was supported by European Social Fund (ESF) under the Development Action Program of Human Resources by implementation of the project “Execution of functions assigned to Lithuanian Research Council for implementation of the Global Grant measure” (Grant # VP1-3.1-SMM-07-K-03-052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruta Aldonyte.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Ieva Bruzauskaite and Jovile Raudoniute have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruzauskaite, I., Raudoniute, J., Denkovskij, J. et al. Native matrix-based human lung alveolar tissue model in vitro: studies of the reparatory actions of mesenchymal stem cells. Cytotechnology 69, 1–17 (2017). https://doi.org/10.1007/s10616-016-0021-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-016-0021-z

Keywords

Navigation