Cytotechnology

, Volume 68, Issue 4, pp 1197–1205 | Cite as

Antitumour action on human glioblastoma A1235 cells through cooperation of bee venom and cisplatin

  • Goran Gajski
  • Tamara Čimbora-Zovko
  • Sanjica Rak
  • Maja Osmak
  • Vera Garaj-Vrhovac
Original Research

Abstract

Cisplatin (cDDP) is one of the most widely used anticancer-drugs in both therapy and research. However, cDDP-resistance is the greatest obstacle for the successful treatment of cancer patients. In the present study, the possible joint anticancer effect of bee venom (BV), as a natural toxin, and cDDP towards human glioblastoma A1235 cells was evaluated. Treatment with BV alone in concentrations of 2.5–30 μg/ml displayed dose-dependent cytotoxicity towards A1235 cells, as evaluated with different cytotoxicity assays (MTT, Cristal violet and Trypan blue exclusion assay), with an IC50 value of 22.57 μg/ml based on the MTT results. Furthermore, BV treatment induced necrosis, which was confirmed by typical morphological features and fast staining with ethidium-bromide dye. Pre-treatment with BV induced cell sensitization to cDDP, indicating that BV could improve the killing effect of selected cells when combined with cDDP. The isobologram method used to determine the extent of synergism in combining two agents to examine their possible therapeutic effect showed that combined treatment induced an additive and/or synergistic effect towards selected cells depending on the concentration of both. Hence, a greater anticancer effect could be triggered if BV was used in the course of chemotherapy. The obtained results indicate that joint treatment with BV could be useful from the point of minimizing the cDDP concentration during chemotherapy, thus reducing and/or postponing the development of drug resistance. Our data, in accordance with previously reported results, suggests that BV could be used in the development of a new strategy for cancer treatment.

Keywords

Biotoxins Bee venom Cisplatin Combination therapy Cytotoxicity Human glioblastoma cells 

Notes

Acknowledgments

This work was supported by the Ministry of Science, Education and Sport of the Republic of Croatia (Grant Nos. 022-0222148-2125 and 098-0982913-2748).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alizadehnohi M, Nabiuni M, Nazari Z, Safaeinejad Z, Irian S (2012) The synergistic cytotoxic effect of cisplatin and honey bee venom on human ovarian cancer cell line A2780cp. J Venom Res 3:22–27Google Scholar
  2. Boukraâ L, Sulaiman SA (2009) Rediscovering the antibiotics of the hive. Recent Pat Antiinfect Drug Discov 4:206–213. doi: 10.2174/157489109789318505 CrossRefGoogle Scholar
  3. Brdar B, Matulić M (1988) Induction of plasminogen activator by N-methyl-N’-nitro-N-nitrosoguanidine in mer+ and mer− human tumour cell strains. Carcinogenesis 9:2191–2195. doi: 10.1093/carcin/9.12.2191 CrossRefGoogle Scholar
  4. Brozović A, Ambriović-Ristov A, Osmak M (2010) The relationship between cisplatin-induced reactive oxygen species, glutathione, and BCL-2 and resistance to cisplatin. Crit Rev Toxicol 40:347–359. doi: 10.3109/10408441003601836 CrossRefGoogle Scholar
  5. Carmona-Ribeiro AM, de Melo Carrasco LD (2014) Novel formulations for antimicrobial peptides. Int J Mol Sci 15:18040–18083. doi: 10.3390/ijms151018040 CrossRefGoogle Scholar
  6. Chen J, Lariviere WR (2010) The nociceptive and anti-nociceptive effects of bee venom injection and therapy: a double-edged sword. Prog Neurobiol 92:151–183. doi: 10.1016/j.pneurobio.2010.06.006 CrossRefGoogle Scholar
  7. Choi KE, Hwang CJ, Gu SM, Park MH, Kim JH, Park JH, Ahn YJ, Kim JY, Song MJ, Song HS, Han SB, Hong JT (2014) Cancer cell growth inhibitory effect of bee venom via increase of death receptor 3 expression and inactivation of NF-kappa B in NSCLC cells. Toxins (Basel) 6:2210–2228. doi: 10.3390/toxins6082210 CrossRefGoogle Scholar
  8. Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–378. doi: 10.1016/j.ejphar.2014.07.025 CrossRefGoogle Scholar
  9. Dempsey CE (1990) The actions of melittin on membranes. Biochim Biophys Acta 1031:143–161. doi: 10.1016/0304-4157(90)90006-X CrossRefGoogle Scholar
  10. Deorukhkar A, Krishnan S, Sethi G, Aggarwal BB (2007) Back to basics: how natural products can provide the basis for new therapeutics. Expert Opin Investig Drugs 16:1753–1773. doi: 10.1517/13543784.16.11.1753 CrossRefGoogle Scholar
  11. Edinger AL, Thompson CB (2004) Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16:663–669. doi: 10.1016/j.ceb.2004.09.011 CrossRefGoogle Scholar
  12. Fink D, Howell SB (2000) How does cisplatin kill cells? In: Kelland LR, Farrell N (eds) Platinum-based drugs in cancer therapy 7. Humana Press Inc, Totowa, New Jersey, pp 149–167CrossRefGoogle Scholar
  13. Fuertes MA, Alonso C, Perez JM (2003) Biochemical modulation of cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. Chem Rev 103:645–662. doi: 10.1021/cr020010d CrossRefGoogle Scholar
  14. Gajski G, Garaj-Vrhovac V (2011) Bee venom induced cytogenetic damage and decreased cell viability in human white blood cells after treatment in vitro: a multi-biomarker approach. Environ Toxicol Pharmacol 32:201–211. doi: 10.1016/j.etap.2011.05.004 CrossRefGoogle Scholar
  15. Gajski G, Garaj-Vrhovac V (2013) Melittin: a lytic peptide with anticancer properties. Environ Toxicol Pharmacol 36:697–705. doi: 10.1016/j.etap.2013.06.009 CrossRefGoogle Scholar
  16. Gajski G, Čimbora-Zovko T, Osmak M, Garaj-Vrhovac V (2011) Bee venom and melittin are cytotoxic against different types of tumor and non-tumor cell lines in vitro. Cancer Res J 4:159–174Google Scholar
  17. Gajski G, Čimbora-Zovko T, Rak S, Rožman M, Osmak M, Garaj-Vrhovac V (2014) Combined antitumor effects of bee venom and cisplatin on human cervical and laryngeal carcinoma cells and their drug resistant sublines. J Appl Toxicol 34:1332–1341. doi: 10.1002/jat.2959 CrossRefGoogle Scholar
  18. Garaj-Vrhovac V, Gajski G (2009) Evaluation of the cytogenetic status of human lymphocytes after exposure to a high concentration of bee venom in vitro. Arh Hig Rada Toksikol 60:27–34. doi: 10.2478/10004-1254-60-2009-1896 CrossRefGoogle Scholar
  19. Gaspar D, Veiga AS, Castanho MA (2013) From antimicrobial to anticancer peptides: a review. Front Microbiol 4:294. doi: 10.3389/fmicb.2013.00294 CrossRefGoogle Scholar
  20. Golstein P, Kroemer G (2007) Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 32:37–43. doi: 10.1016/j.tibs.2006.11.001 CrossRefGoogle Scholar
  21. Gotay CC (2010) Cancer prevention: major initiatives and looking into the future. Expert Rev Pharmacoecon Outcomes Res 10:143–154. doi: 10.1586/erp.10.9 CrossRefGoogle Scholar
  22. Hong SJ, Rim GS, Yang HI, Yin CS, Koh HG, Jang MH, Kim CJ, Choe BK, Chung JH (2005) Bee venom induces apoptosis through caspase-3 activation in synovial fibroblasts of patients with rheumatoid arthritis. Toxicon 46:39–45. doi: 10.1016/j.toxicon.2005.03.015 CrossRefGoogle Scholar
  23. Hu H, Chen D, Li Y, Zhang X (2006) Effect of polypeptides in bee venom on growth inhibition and apoptosis induction of the human hepatoma cell line SMMC-7721 in vitro and Balb/c nude mice in-vivo. J Pharm Pharmacol 58:83–89. doi: 10.1211/jpp.58.1.0010 CrossRefGoogle Scholar
  24. Ip SW, Liao SS, Lin SY, Lin JP, Yang JS, Lin ML, Chen GW, Lu HF, Lin MW, Han SM, Chung JG (2008a) The role of mitochondria in bee venom-induced apoptosis in human breast cancer MCF7 cells. In Vivo 22:237–245Google Scholar
  25. Ip SW, Wei HC, Lin JP, Kuo HM, Liu KC, Hsu SC, Yang JS, Mei-Dueyang Chiu TH, Han SM, Chung JG (2008b) Bee venom induced cell cycle arrest and apoptosis in human cervical epidermoid carcinoma Ca Ski cells. Anticancer Res 28:833–842Google Scholar
  26. Ip SW, Chu YL, Yu CS, Chen PY, Ho HC, Yang JS, Huang HY, Chueh FS, Lai TY, Chung JG (2012) Bee venom induces apoptosis through intracellular Ca(2+) -modulated intrinsic death pathway in human bladder cancer cells. Int J Urol 19:61–70. doi: 10.1111/j.1442-2042.2011.02876.x CrossRefGoogle Scholar
  27. Jang MH, Shin MC, Lim S, Han SM, Park HJ, Shin I (2003) Bee venom induces apoptosis and inhibits expression of cyclooxygenase-2 mRNA in human lung cancer cell line NCI-H1299. J Pharmacol Sci 91:95–104. doi: 10.1254/jphs.91.95 CrossRefGoogle Scholar
  28. Jin ZJ (1980) Addition in drug combination. Acta Pharmacol Sin 1:70–76Google Scholar
  29. Jo M, Park MH, Kollipara PS, An BJ, Song HS, Han SB, Kim JH, Song MJ, Hong JT (2012) Anti-cancer effect of bee venom toxin and melittin in ovarian cancer cells through induction of death receptors and inhibition of JAK2/STAT3 pathway. Toxicol Appl Pharmacol 258:72–81. doi: 10.1016/j.taap.2011.10.009 CrossRefGoogle Scholar
  30. Kouros N (2013) New research finds HIV can be killed with bee venom. Monash Bioeth Rev 31:4Google Scholar
  31. Kueng W, Silber E, Eppenberger U (1989) Quantification of cells cultured on 96-well plates. Anal Biochem 182:16–19. doi: 10.1016/0003-2697(89)90710-0 CrossRefGoogle Scholar
  32. Lee YJ, Kang SJ, Kim BM, Kim YJ, Woo HD, Chung HW (2007) Cytotoxicity of honeybee (Apis mellifera) venom in normal human lymphocytes and HL-60 cells. Chem Biol Interact 169:189–197. doi: 10.1016/j.cbi.2007.06.036 CrossRefGoogle Scholar
  33. Liu X, Chen D, Xie L, Zhang R (2002) Effect of honey bee venom on proliferation of K1735M2 mouse melanoma cells in vitro and growth of murine B16 melanomas in-vivo. J Pharm Pharmacol 54:1083–1089. doi: 10.1211/002235702320266235 CrossRefGoogle Scholar
  34. Liu CC, Yang H, Zhang LL, Zhang Q, Chen B, Wang Y (2014) Biotoxins for cancer therapy. Asian Pac J Cancer Prev 15:4753–4758. doi: 10.7314/APJCP.2014.15.12.4753 CrossRefGoogle Scholar
  35. Macciò A, Madeddu C (2013) Cisplatin: an old drug with a newfound efficacy— from mechanisms of action to cytotoxicity. Expert Opin Pharmacother 14:1839–1857. doi: 10.1517/14656566.2013.813934 CrossRefGoogle Scholar
  36. Mickisch G, Fajta S, Keilhauer G, Schlick E, Tschada R, Alken P (1990) Chemosensitivity testing of primary human renal cell carcinoma by a tetrazolium based microculture assay (MTT). Urol Res 18:131–136. doi: 10.1007/BF00302474 CrossRefGoogle Scholar
  37. Moon DO, Park SY, Heo MS, Kim KC, Park C, Ko WS (2006) Key regulators in bee venom-induced apoptosis are Bcl-2 and caspase-3 in human leukemic U937 cells through downregulation of ERK and Akt. Int Immunopharmacol 6:1796–1807. doi: 10.1016/j.intimp.2006.07.027 CrossRefGoogle Scholar
  38. Oršolić N (2009) Potentiation of bleomycin lethality in HeLa and V79 cells by bee venom. Arh Hig Rada Toksikol 60:317–326. doi: 10.2478/10004-1254-60-2009-1936 Google Scholar
  39. Oršolić N (2012) Bee venom in cancer therapy. Cancer Metastasis Rev 31:173–194. doi: 10.1007/s10555-011-9339-3 CrossRefGoogle Scholar
  40. Oršolić N, Šver L, Verstovšek S, Terzić S, Bašić I (2003) Inhibition of mammary carcinoma cell proliferation in vitro and tumor growth in vivo by bee venom. Toxicon 41:861–870. doi: 10.1016/S0041-0101(03)00045-X CrossRefGoogle Scholar
  41. Park MH, Choi MS, Kwak DH, Oh KW, do Yoon Y, Han SB, Song HS, Song MJ, Hong JT (2011) Anti-cancer effect of bee venom in prostate cancer cells through activation of caspase pathway via inactivation of NF-κB. Prostate 71:801–812. doi: 10.1002/pros.21296 CrossRefGoogle Scholar
  42. Premratanachai P, Chanchao C (2014) Review of the anticancer activities of bee products. Asian Pac J Trop Biomed 4:337–344. doi: 10.12980/APJTB.4.2014C1262 CrossRefGoogle Scholar
  43. Putz T, Ramoner R, Gander H, Rahm A, Bartsch G, Thurnher M (2006) Antitumor action and immune activation through cooperation of bee venom secretory phospholipase A2 and phosphatidylinositol-(3,4)-bisphosphate. Cancer Immunol Immunother 55:1374–1383. doi: 10.1007/s00262-006-0143-9 CrossRefGoogle Scholar
  44. Raghuraman H, Chattopadhyay A (2007) Melittin: a membrane-active peptide with diverse functions. Biosci Rep 27:189–223. doi: 10.1007/s10540-006-9030-z CrossRefGoogle Scholar
  45. Safaeinejad Z, Nabiuni M, Nazari Z (2013) Potentiation of a novel palladium (II) complex lethality with bee venom on the human T-cell acute lymphoblastic leukemia cell line (MOLT-4). J Venom Anim Toxins Incl Trop Dis 19:25. doi: 10.1186/1678-9199-19-25 CrossRefGoogle Scholar
  46. Schweizer F (2009) Cationic amphiphilic peptides with cancer-selective toxicity. Eur J Pharmacol 625:190–194. doi: 10.1016/j.ejphar.2009.08.043 CrossRefGoogle Scholar
  47. Shen DW, Pouliot LM, Hall MD, Gottesman MM (2012) Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol Rev 64:706–721. doi: 10.1124/pr.111.005637 CrossRefGoogle Scholar
  48. Six DA, Dennis EA (2000) The expanding superfamily of phospholipase A(2) enzymes: classification and characterization. Biochim Biophys Acta 1488:1–19. doi: 10.1016/S1388-1981(00)00105-0 CrossRefGoogle Scholar
  49. Son DJ, Lee JW, Lee YH, Song HS, Lee CK, Hong JT (2007) Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol Ther 115:246–270. doi: 10.1016/j.pharmthera.2007.04.004 CrossRefGoogle Scholar
  50. Stathopoulos GP (2013) Cisplatin: process and future. J BUON 18:564–569Google Scholar
  51. Stewart DJ (2007) Mechanisms of resistance to cisplatin and carboplatin. Crit Rev Oncol Hematol 63:12–31. doi: 10.1016/j.critrevonc.2007.02.001 CrossRefGoogle Scholar
  52. Stewart BW, Kleihues P (2003) World cancer report, 2nd edn. IARC Press, LyonGoogle Scholar
  53. Strober W (2001) Trypan blue exclusion test of cell viability. Curr Protoc Immunol A 3:A3B. doi: 10.1002/0471142735.ima03bs21 Google Scholar
  54. Stuhlmeier KM (2007) Apis mellifera venom and melittin block neither NF-kappa B-p50-DNA interactions nor the activation of NF-kappa B, instead they activate the transcription of proinflammatory genes and the release of reactive oxygen intermediates. J Immunol 179:655–664. doi: 10.4049/jimmunol.179.1.655 CrossRefGoogle Scholar
  55. Tu WC, Wu CC, Hsieh HL, Chen CY, Hsu SL (2008) Honeybee venom induces calcium-dependent but caspase-independent apoptotic cell death in human melanoma A2058 cells. Toxicon 52:318–329. doi: 10.1016/j.toxicon.2008.06.007 CrossRefGoogle Scholar
  56. Vanden Berghe T, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabeele P (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15:135–147. doi: 10.1038/nrm3737 CrossRefGoogle Scholar
  57. Varanda EA, Tavares DC (1998) Radioprotection: mechanism and radioprotective agents including honey bee venom. J Venom Anim Toxins 4:5–21CrossRefGoogle Scholar
  58. Varanda EA, Monti R, Tavares DC (1999) Inhibitory effect of propolis and bee venom on the mutagenicity of some direct- and indirect-acting mutagens. Teratog Carcinog Mutagen 19:403–413. doi: 10.1002/(SICI)1520-6866(1999)19:6<403:AID-TCM4>3.0.CO;2-2 CrossRefGoogle Scholar
  59. Wang X, Feng Y, Wang N, Cheung F, Tan HY, Zhong S, Li C, Kobayashi S (2014) Chinese medicines induce cell death: the molecular and cellular mechanisms for cancer therapy. Biomed Res Int 2014:530342. doi: 10.1155/2014/530342 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Goran Gajski
    • 1
  • Tamara Čimbora-Zovko
    • 2
  • Sanjica Rak
    • 2
  • Maja Osmak
    • 2
  • Vera Garaj-Vrhovac
    • 1
  1. 1.Mutagenesis UnitInstitute for Medical Research and Occupational HealthZagrebCroatia
  2. 2.Laboratory for Genotoxic Agents, Division of Molecular BiologyRuđer Bošković InstituteZagrebCroatia

Personalised recommendations