, Volume 68, Issue 2, pp 343–353

ReNCell VM conditioned medium enhances the induction of dental pulp stem cells into dopaminergic like cells

  • Nareshwaran Gnanasegaran
  • Vijayendran Govindasamy
  • Sabri Musa
  • Noor Hayaty Abu Kasim
Original Research


Among the debilitating diseases, neurological related diseases are the most challenging ones to be treated using cell replacement therapies. Recently, dental pulp stem cells (SHED) were found to be most suitable cell choice for neurological related diseases as evidenced with many preclinical studies. To enhance the neurological potential of SHED, we recapitulated one of the pharmacological therapeutic tools in cell replacement treatment, we pre-conditioned dental pulp stem cells (SHED) with culture medium of ReNCell VM, an immortalized neuron progenitor cell, prior to neurogenesis induction and investigated whether this practice enhances their neurogenesis potential especially towards dopaminergic neurons. We hypothesed that the integration of pharmacological practices such as co-administration of various drugs, a wide range of doses and duration as well as pre-conditioning into cell replacement may enhance the efficacy of stem cell therapy. In particular, pre-conditioning is shown to be involved in the protective effect from some membrano-tropic drugs, thereby improving the resistance of cell structures and homing capabilities. We found that cells pre-treated with ReNCell VM conditioned medium displayed bipolar structures with extensive branches resembling putative dopaminergic neurons as compared to non-treated cells. Furthermore, many neuronal related markers such as NES, NR4A2, MSI1, and TH were highly expressed (fold changes > 2; p < 0.05) in pre-treated cells. Similar observations were detected at the protein level. The results demonstrate for the first time that SHED pre-conditioning enhances neurological potential and we suggest that cells should be primed to their respective environment prior to transplantation.


Neural progenitor cells Mesenchymal stem cells Neurogenesis Tyrosine hydroxylase Dopamine acetyl-transferase 


  1. Abu Kasim NH, Govindasamy V, Gnanasegaran N, Musa S, Pradeep PJ, Srijaya TC, Aziz ZA (2012) Unique molecular signatures influencing the biological function and fate of post-natal stem cells isolated from different sources. J Tissue Eng Regen Med. doi:10.1002/term.1663 Google Scholar
  2. Agoston Z, Heine P, Brill MS, Grebbin BM, Hau AC, Kallenborn-Gerhardt W, Schramm J, Götz M, Schulte D (2014) Meis2 is a Pax6 co-factor in neurogenesis and dopaminergic periglomerular fate specification in the adult olfactory bulb. Development 141:28–38. doi:10.1242/dev.097295 CrossRefGoogle Scholar
  3. Ankrum JA, Ong JF, Karp JM (2014) Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 32:252–260. doi:10.1038/nbt.2816
  4. Chaudhry ZL, Ahmed BY (2013) Caspase-2 and caspase-8 trigger caspase-3 activation following 6-OHDA-induced stress in human dopaminergic neurons differentiated from ReNVM stem cells. Neurol Res 35:435–440. doi:10.1179/1743132812Y.0000000135 CrossRefGoogle Scholar
  5. Chen T, Dent SY (2014) Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat Rev Genet 15:93–106. doi:10.1038/nrg3607 CrossRefGoogle Scholar
  6. Choudhery MS, Khan M, Mahmood R, Mohsin S, Akhtar S, Ali F, Khan SN, Riazuddin S (2012) Mesenchymal stem cells conditioned with glucose depletion augments their ability to repair-infarcted myocardium. J Cell Mol Med 16:2518–2529. doi:10.1111/j.1582-4934.2012.01568.x CrossRefGoogle Scholar
  7. Daadi MM, Grueter BA, Malenka RC, Redmond DE Jr, Steinberg GK (2012) Dopaminergic neurons from midbrain-specified human embryonic stem cell-derived neural stem cells engrafted in a monkey model of Parkinson’s disease. PLoS One 7:e41120CrossRefGoogle Scholar
  8. Faigle R, Song H (2013) Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochim Biophys Acta 1830:2435–2448. doi:10.1016/j.bbagen.2012.09.002 CrossRefGoogle Scholar
  9. Govindasamy V, Abdullah AN, Ronald VS, Musa S, Ab Aziz ZA, Zain RB, Totey S, Bhonde RR, Abu Kasim NH (2010a) Inherent differential propensity of dental pulp stem cells derived from human deciduous and permanent teeth. J Endod 36:1504–1515. doi:10.1016/j.joen.2010.05.006 CrossRefGoogle Scholar
  10. Govindasamy V, Ronald VS, Totey S, Din SB, Mustafa WM, Totey S, Zakaria Z, Bhonde RR (2010b) Micro manipulation of culture niche permits long-term expansion of dental pulp stem cells—an economic and commercial angle. Vitro Cell Dev Biol Anim 46:764–773. doi:10.1007/s11626-010-9332-0 CrossRefGoogle Scholar
  11. Govindasamy V, Ronald VS, Abdullah AN, Nathan KR (2011) Differentiation of dental pulp stem cells into islet-like aggregates. J Dent Res 90:646–652. doi:10.1177/0022034510396879 CrossRefGoogle Scholar
  12. Hagemann TL, Paylor R, Messing A (2013) Deficits in adult neurogenesis, contextual fear conditioning, and spatial learning in a Gfap mutant mouse model of Alexander disease. J Neurosci 33:18698–18706. doi:10.1523/JNEUROSCI.3693-13.2013 CrossRefGoogle Scholar
  13. Hass R, Kasper C, Böhm S, Jacobs R (2011) Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal 9:12CrossRefGoogle Scholar
  14. Hernández-Benítez R, Vangipuram SD, Ramos-Mandujano G, Lyman WD, Pasantes-Morales H (2013) Taurine enhances the growth of neural precursors derived from fetal human brain and promotes neuronal specification. Dev Neurosci 35:40–49. doi:10.1159/000346900 CrossRefGoogle Scholar
  15. Hong S, Kang UJ, Isacson O, Kim KS (2008) Neural precursors derived from human embryonic stem cells maintain long-term proliferation without losing the potential to differentiate into all three neural lineages, including dopaminergic neurons. J Neurochem 104:316–324Google Scholar
  16. Hong S, Chung S, Leung K, Hwang I, Moon J, Kim KS (2014) Functional roles of nurr1, pitx3, and lmx1a in neurogenesis and phenotype specification of dopamine neurons during in vitro differentiation of embryonic stem cells. Stem Cells Dev 23:477–487. doi:10.1089/scd.2013.0406 CrossRefGoogle Scholar
  17. Horn AP, Bernardi A, Luiz Frozza R, Grudzinski PB, Hoppe JB, de Souza LF, Chagastelles P, de Souza Wyse AT, Bernard EA, Battastini AM, Campos MM, Lenz G, Nardi NB, Salbego C (2011) Mesenchymal stem cell-conditioned medium triggers neuroinflammation and reactive species generation in organotypic cultures of rat hippocampus. Stem Cells Dev 20:1171–1181. doi:10.1089/scd.2010.0157 CrossRefGoogle Scholar
  18. Ishkitiev N, Yaegaki K, Imai T, Tanaka T, Nakahara T, Ishikawa H, Mitev V, Haapasalo M (2012) High-purity hepatic lineage differentiated from dental pulp stem cells in serum-free medium. J Endod 38:475–480CrossRefGoogle Scholar
  19. Jaeger A, Baake J, Weiss DG, Kriehuber R (2013) Glycogen synthase kinase-3beta regulates differentiation-induced apoptosis of human neural progenitor cells. Int J Dev Neurosci 31:61–68. doi:10.1016/j.ijdevneu.2012.10.005 CrossRefGoogle Scholar
  20. Kanafi M, Majumdar D, Bhonde R, Datta I (2014) Midbrain cues dictate differentiation of human dental pulp stem cells towards functional dopaminergic neurons. J Cell Physiol 229:1369–1377. doi:10.1002/jcp.24570
  21. Kawasaki H, Suemori H, Mizuseki K, Watanabe K, Urano F, Ichinose H, Haruta M, Takahashi M, Yoshikawa K, Nishikawa SI (2002) Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc Natl Acad Sci 99:1580–1585CrossRefGoogle Scholar
  22. Kim HJ, Sugimori M, Nakafuku M, Svendsen CN (2007) Control of neurogenesis and tyrosine hydroxylase expression in neural progenitor cells through bHLH proteins and Nurr1. Exp Neurol 203:394–405CrossRefGoogle Scholar
  23. Knight MN, Hankenson KD (2013) Mesenchymal stem cells in bone regeneration. Adv Wound Care 2:306–316CrossRefGoogle Scholar
  24. Lagace DC, Whitman MC, Noonan MA, Ables JL, DeCarolis NA, Arguello AA, Donovan MH, Fischer SJ, Farnbauch LA, Beech RD, DiLeone RJ, Greer CA, Mandyam CD, Eisch AJ (2007) Dynamic contribution of nestin-expressing stem cells to adult neurogenesis. J Neurosci 27:12623–12629CrossRefGoogle Scholar
  25. Lledo PM, Alonso M, Grubb MS (2006) Adult neurogenesis and functional plasticity in neuronal circuits. Nat Rev Neurosci 7:179–193CrossRefGoogle Scholar
  26. Lu Z, Wang G, Dunstan CR, Chen Y, Lu WY, Davies B, Zreiqat H (2013) Activation and promotion of adipose stem cells by tumour necrosis factor-α preconditioning for bone regeneration. J Cell Physiol 228:1737–1744. doi:10.1002/jcp.24330 CrossRefGoogle Scholar
  27. Masoud MS, Anwar SS, Afzal MZ, Mehmood A, Khan SN, Riazuddin S (2012) Pre-conditioned mesenchymal stem cells ameliorate renal ischemic injury in rats by augmented survival and engraftment. J Transl Med 10:243. doi:10.1186/1479-5876-10-243 CrossRefGoogle Scholar
  28. Mußmann C, Hübner R, Trilck M, Rolfs A, Frech MJ (2014) HES5 is as a key mediator of Wnt-3a induced neuronal differentiation. Stem Cells Dev 23:1328–1339Google Scholar
  29. Neher JJ, Brown GC, Kinsner-Ovaskainen A, Bal-Price A (2011) Inflammation and reactive oxygen/nitrogen species in glial/neuronal cultures. Cell Culture Tech. Humana Press, New Jersey, pp. 331–347Google Scholar
  30. Plotnikov EY, Pulkova NV, Pevzner IB, Zorova LD, Silachev DN, Morosanova MA, Sukhikh GT, Zorov DB (2013) Inflammatory pre-conditioning of mesenchymal multipotent stromal cells improves their immunomodulatory potency in acute pyelonephritis in rats. Cytotherapy 15:679–689. doi:10.1016/j.jcyt.2013.02.003 CrossRefGoogle Scholar
  31. Pozniak CD, Pleasure SJ (2006) Genetic control of hippocampal neurogenesis. Genome Biol 7:207. doi:10.1186/gb-2006-7-3-207 CrossRefGoogle Scholar
  32. Ruiz C, Casarejos MJ, Gomez A, Solano R, de Yebenes JG, Mena MA (2012) Protection by glia-conditioned medium in a cell model of Huntington disease. PLoS Currents 4. doi:10.1371/4fbca54a2028b
  33. Samper E, Diez-Juan A, Montero J, Sepúlveda P (2013) Cardiac cell therapy: boosting mesenchymal stem cells effects. Stem Cell Rev Rep 9:266–280CrossRefGoogle Scholar
  34. Sethe S, Scutt A, Stolzing A (2006) Aging of mesenchymal stem cells. Ageing Res Rev 5:91–116CrossRefGoogle Scholar
  35. Skuk D (2013) Cell transplantation and “stem cell therapy” in the treatment of myopathies: many promises in mice, few realities in humans. ISRN Transplant 2013:25. doi:10.5402/2013/582689 CrossRefGoogle Scholar
  36. Wang J, Wang X, Sun Z, Wang X, Yang H, Shi S, Wang S (2010) Stem cells from human-exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells Dev 19:1375–1383. doi:10.1089/scd.2009.0258 CrossRefGoogle Scholar
  37. Whone AL, Kemp K, Sun M, Wilkins A, Scolding NJ (2012) Human bone marrow mesenchymal stem cells protect catecholaminergic and serotonergic neuronal perikarya and transporter function from oxidative stress by the secretion of glial-derived neurotrophic factor. Brain Res 1431:86–96CrossRefGoogle Scholar
  38. Wu KH, Mo XM, Han ZC, Zhou B (2011) Cardiac cell therapy: pre-conditioning effects in cell-delivery strategies. Cytotherapy 14:260–266. doi:10.3109/14653249.2011.643780 CrossRefGoogle Scholar
  39. Yazid FB, Gnanasegaran N, Kunasekaran W, Govindasamy V, Musa S (2014) Comparison of immunodulatory properties of dental pulp stem cells derived from healthy and inflamed teeth. Clin Oral Investig. doi:10.1007/s00784-014-1207-4

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Nareshwaran Gnanasegaran
    • 1
    • 2
  • Vijayendran Govindasamy
    • 1
  • Sabri Musa
    • 3
  • Noor Hayaty Abu Kasim
    • 2
  1. 1.cGMP-Compliant Stem Cell LaboratoryHygieia Innovation Sdn. BhdFederal Territory of PutrajayaMalaysia
  2. 2.Department of Restorative Dentistry, Faculty of DentistryUniversity of MalayaKuala LumpurMalaysia
  3. 3.Department of Paediatric Dentistry and Orthodontics, Faculty of DentistryUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations