Skip to main content
Log in

Establishment of callus and cell suspension culture of Scrophularia striata Boiss.: an in vitro approach for acteoside production

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

In the present study, a protocol was optimized for establishment of callus and cell suspension culture of Scrophularia striata Boiss. as a strategy to obtain an in vitro acteoside producing cell line for the first time. The effects of growth regulators were analyzed to optimize the biomass growth and acteoside production. The stem explant of S. striata was optimum for callus induction. Modified Murashige and Skoog medium supplemented with 0.5 mg/l naphthalene acetic acid + 2.0 mg/l benzyl adenine was the most favorable medium for callus formation with the highest induction rate (100 %), the best callus growth and the highest acteoside content (1.6 μg/g fresh weight). Incompact and rapid growing suspension cells were established in the liquid medium supplemented with 0.5 mg/l naphthalene acetic acid + 2.0 mg/l benzyl adenine. The optimum time of subculture was found to 17–20 days. Acteoside content in the cell suspension was high during exponential growth phase and decreased subsequently at the stationary phase. The maximum content of acteoside (about 14.25 μg/g cell fresh weight) was observed on the 17th day of the cultivation cycle. This study provided an efficient way to further regulation of phenylethanoid glycoside biosynthesis and production of valuable acteoside, a phenylethanoid glycoside, on scale-up in S. striata cell suspension culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad S, Spoor W (1999) Effect of NAA and BAP on callus culture and plant regeneration in Curly kale (Brassica oleraces L.). Pak J Biol Sci 2:109–112

    Article  Google Scholar 

  • Ardeshiry Lajimi A, Rezaei Tavirani M, Mortazavi SA, Barzegr MSH, Rezaee MB (2010) Study of anti cancer property of Scrophularia striata extract on the human astrocytoma cell line (1321). IJPR 9:403–410

    Google Scholar 

  • Azadmehr A, Afshari A, Baradaran B, Hajiaghaee R, Rezazadeh S, Monsef-Esfahani H (2009) Suppression of nitric oxide production in activated murine peritoneal macrophages in vitro and ex vivo by Scrophularia striata ethanolic extract. J Ethnopharmacol 6:166–169

    Article  Google Scholar 

  • Bahrami AM, Valadi A (2010) Effect of Scrophularia striata ethanolic leaves extracts on staphylococcus areus. Int J Pharmacol 6:393–396

    Article  Google Scholar 

  • Bhojwani SS, Razdan MK (1983) Plant tissue culture: theory and practice. Elsevier, Amsterdam

    Google Scholar 

  • Buitelaar RM, Trapmer J (1992) Strategies to improve the production of secondary metabolites with plant cell cultures: a literature review. J Biotechnol 23:111–141

    Article  CAS  Google Scholar 

  • Chang HN, Sim SJ (1995) Extractive plant cell medicinal plant. Plant cell culture. Curr Opin Biotechnol 6:209–212

    Article  Google Scholar 

  • Chen WH, Xu CM, Zeng JL, Zhao B, Wang XD, Wang YC (2007) Improvement of echinacoside and acteoside production by two-stage elicitation in cell suspension culture of Cistanche deserticola. World J Microbiol Biotechnol 23:1451–1458

    Article  CAS  Google Scholar 

  • Cheng H, Yu LJ, Hu QY, Chen SC, Sun YP (2006) Establishment of callus and cell suspension cultures of Corydalis saxicola Bunting, a rare medicinal plant. Z Naturforsch 61:251–256

    Article  CAS  Google Scholar 

  • Chiou WF, Lin LC, Chen CF (2004) Acteoside protects endothelial cells against free radical-induced oxidative stress. J Pharm Pharmacol 56:743–748

    Article  CAS  Google Scholar 

  • Curtis W, Emery A (1993) Plant cell suspension culture rheology. Biotechnol Bioeng 42:520–526

    Article  CAS  Google Scholar 

  • Duangporn P, Siripong P (2009) Effect of auxin and cytokinin on phyllanthusol A production by callus cultures of Phyllanthus acidus skeels. Am-Eurasian J Agri Environ Sci 5:258–263

    CAS  Google Scholar 

  • El-Mawla AAMA, Ahmed AS, Ibraheim ZZ, Ernst L (2005) Phenylethanoid glycoside from Barleria cristata L. callus cultures. Bull Pharm Sci Assiut Univ 28:199–204

    Google Scholar 

  • Estrada-Zúñiga ME, Cruz-Sosa F, Rodríguez-Monroy M, Verde-Calvo JR, Vernon-Carter EJ (2009) Phenylpropanoid production in callus and cell suspension cultures of Buddleja cordata Kunth. Plant Cell Tissue Organ Cult 97:39–47

    Article  Google Scholar 

  • Giri A, Narasu ML (2000) Production of podophyllotoxin from Podophyllum hexandrum: a potential natural product for clinically useful anticancer drugs. Cytotechnology 34:17–26

    Article  CAS  Google Scholar 

  • Grau J (1981) Scrophularia in Flora Iranica. In: Rechinger KH (ed) Akademische Druck- u. Verlagsanstalt, Graz, Austria 147:213–290

  • Hajiaghaee R, Monsef-Esfahani HR, Khorramizadeh MR, Saadat F, Shahverdi AR, Attar F (2007) Inhibitory effect of aerial parts of Scrophularia striata on matrix metalloproteinases expression. Phytother Res 21:1127–1129

    Article  Google Scholar 

  • Hazeena MS, Sulekha GR (2008) Callus induction and plantlet regeneration in Aegle marmelos (L.) Corr. using cotyledon explants. J Trop Agr 46:79–84

    CAS  Google Scholar 

  • He ZD, Lau KM, Xu HX, Li PC, But PP (2000) Antioxidant activity of phenylethanoid glycosides from Brandisia hancei. J Ethnopharmacol 71:483–486

    Article  CAS  Google Scholar 

  • He J, Hu XP, Zeng Y, Li Y, Wu HQ, Qiu RZ, Ma WJ, Li T, Li CY, He ZD (2011) Advanced research on acteoside for chemistry and bioactivities. J Asian Nat Prod Res 13:449–464

    Article  CAS  Google Scholar 

  • Hellwig S, Drossard J, Twyman RM, Fischer R (2004) Plant cell cultures for the production of recombinant proteins. Nat Biotechnol 22:1415–1422

    Article  CAS  Google Scholar 

  • Hwang YP, Kim HG, Choi JH, Park BH, Jeong MH, Jeong TC, Jeong HG (2010) Acteoside inhibits PMA-induced matrix metallo-proteinase-9 expression via CaMK/ERK- and JNK/NF-jB-dependent signaling. Mol Nutr Food Res 54:1–14

    Google Scholar 

  • Imakura Y, Kohayashi S, Mima A (1985) Bitter phenylpropanoid glycosides from Campsis chinensis. Phytochem 24:139–146

    Article  CAS  Google Scholar 

  • Inagaki N, Nishimura H, Okada M, Mitsuhashi H (1991) Verbascoside production by plant cell cultures. Plant Cell Rep 9:484–487

    Article  CAS  Google Scholar 

  • Jahan MAA, Hadiuzzaman S (1996) Callus induction and plant regeneration from different explants of Solanum nigrum L. seedlings. Plant Tissue Cult 6:57–62

    Google Scholar 

  • Kitagawa S, Nishibe S, Benecke R, Thieme H (1988) Phenolic compounds from Forsynthia leaves II. Chem Pharm Bull 36:3667–3670

    Article  CAS  Google Scholar 

  • Kunvari M, Paska C, Laszlo M, Orfi L, Kövesdi I, Eros D, Bökönyi G, Keri G, Gyurjan I (1999) Biological activity and structure of antitumor compounds from Plantago media L. Acta Pharm Hung 69:232–239

    CAS  Google Scholar 

  • Lee WL, Chan LK (2004) Establishment of Orthosiphon stamineus cell suspension culture for cell growth. Plant Cell Tissue Organ Cult 78:101–106

    Article  Google Scholar 

  • Lee JY, Woo ER, Kang KW (2005) Inhibition of lipopolysaccharide-inducible nitric oxide synthase expression by acteoside through blocking of AP-1 activation. J Ethnopharmacol 97:561–566

    Article  CAS  Google Scholar 

  • Lee JH, Lee JY, Kang HS, Jeong CH, Moon H, Whang WK, Kim CJ, Sim SS (2006) The effect of acteoside on histamine release and arachidonic acid release in RBL-2H3 mast cells. Arch Pharm Res 29:508–513

    Article  CAS  Google Scholar 

  • Lee KW, Kim HJ, Lee YS, Park HJ, Choi JW, Ha J, Lee KT (2007) Acteoside inhibits human promyelocytic HL-60 leukemia cell proliferation via inducing cell cycle arrest at G0/G1 phase and differentiation into monocyte. Carcinogenesis 28:1928–1936

    Article  CAS  Google Scholar 

  • Lisowska K, Wysokinska H (2000) In vitro propagation of Catalpa ovate G. Don. Plant Cell Tissue Organ Cult 60:171–176

    Article  Google Scholar 

  • Mathur S, Shekhawat GS (2013) Establishment and characterization of Stevia rebaudiana (Bertoni) cell suspension culture: an in vitro approach for production of stevioside. Acta Physiol Plant 35:931–939

    Article  CAS  Google Scholar 

  • Mini ML, Sankaranarayanan R (2013) Standardization of callus induction in Saraca indica Auct, Non Linn. J Chem Pharm Res 5:250–252

    CAS  Google Scholar 

  • Monacelli B, Pasqua G, Cuteri A, Varusio A, Botta B, Monache GD (1995) Histological study of callus formation and optimization of cell growth in Taxus baccata. Cytobios 81:159–170

    CAS  Google Scholar 

  • Monsef-Esfahani HR, Hajiaghaee R, Shahverdi AR, Khorramizadeh MR, Amini M (2010) Flavonoids, cinnamic acid and phenylpropanoid from aerial parts of Scrophularia striata. Pharm Biol 48:333–336

    Article  CAS  Google Scholar 

  • Mukherjee S, Ghosh B, Jha S (2000) Establishment of forskolin yielding transformed cell suspension cultures of Coleus forskohliias controlled by different factors. J Biotechnol 76:73–81

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Nabi SA, Rashid MM, Amin MA, Rasul MG (2002) Organogenesis in teasle gourd (Momordica dioica Roxb.). Plant Tissue Cult 12:173–180

    Google Scholar 

  • Nezbedová L, Hesse M, Dušek J, Werner C (1999) Chemical potential of Aphelandra sp. cell cultures. Plant Cell Tissue Organ Cult 58:133–140

    Article  Google Scholar 

  • Nurazah Z, Radzali M, Syahida A, Maziah M (2009) Effects of plant growth regulators on callus induction from Cananga odorata flower petal explants. Afr J Biotechnol 8:2740–2743

    CAS  Google Scholar 

  • Ohno T, Inoue M, Ogihara Y, Saracoglu I (2002) Antimetastatic activity of acteoside, a phenylethanoid glycoside. Biol Pharm Bull 25:666–668

    Article  CAS  Google Scholar 

  • Ouyang J, Wang XD, Zhao B, Wang YC (2003) Formation of phenylethanoid glycosides by Cistanche deserticola callus grown on solid media. Biotechnol Lett 25:223–225

    Article  CAS  Google Scholar 

  • Ouyang J, Wang XD, Zhao B, Wang YC (2005) Enhanced production of phenylethanoid glycosides by precursor feeding to cell culture of Cistanche deserticola. Process Biochem 40:3480–3484

    Article  CAS  Google Scholar 

  • Pereira AC, Carvalho HWP, Silva GH, Oliveira DF, Figueiredo HCP, Cavalheiro AJ, Carvalho DA (2008) Purification of an antibacterial compound from Lantana lilacina. RBDF 18:204–208

    CAS  Google Scholar 

  • Qui JA, Castro-Concha LA, García-Sosa K, Peña-Rodríuez LM, Miranda-Ham ML (2009) Differential effects of phytotoxic metabolites from Alternaria tageticaon Tagetes erecta cell cultures. J Gen Plant Pathol 75:331–339

    Article  CAS  Google Scholar 

  • Ramachandra Rao S, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153

    Article  CAS  Google Scholar 

  • Ray BP, Hassan L, Nasiruddin KM (2011) In vitro regeneration of BRINJAL (Solanum melongena L.). Bangladesh J Agric Res 36:397–406

    Article  Google Scholar 

  • Rodríguez-Monroy M, Galindo E (1999) Broth rheology, growth and metabolite production of Beta vulgaris suspension culture: a comparative study between cultures grown in shake flasks and in stirred tank. Enzyme Microb Technol 24:687–693

    Article  Google Scholar 

  • Sahai OP, Shuler L (1984) Environmental parameters influencing phenolics production by batch cultures of Nicotiana tabacum. Biotechnol Bioeng 26:111–120

    Article  CAS  Google Scholar 

  • Saimaru H, Orihara Y (2010) Biosynthesis of acteoside in cultured cells of Olea europaea. J Nat Med 64:139–145

    Article  CAS  Google Scholar 

  • Sesterhenn K, Distl M, Wink M (2007) Occurrence of iridoid glycosides in in vitro cultures and intact plants of Scrophularia nodosa L. Plant Cell Rep 26:365–371

    Article  CAS  Google Scholar 

  • Shoyama Y, Matsumoto M, Nishioka I (1986) Four caffeoyl glycosides form callus tissue of Rehmannia glutinosa. Phytochemistry 25:1633–1636

    Article  CAS  Google Scholar 

  • Sofiabadi M, Azadmehr A, Hajiaghaei R, Rezazadeh S, Ajdari Zarmehri H (2012) The effect of ethanolic extract of Scrophularia striata on pain in male rats. J Med Plants 11:113–119

    Google Scholar 

  • Soomoro R, Memon RA (2007) Establishment of callus and suspension culture in Jatropha curcas. Pak J Bot 39:2431–2441

    Google Scholar 

  • Stafford A, Warren G (1991) Plant cell and tissue culture. Open University Press, Buckingham

    Google Scholar 

  • Tanveer H, Ali S, Khan ZD (2012) Appraisal of an important flavonoid, Quercetin, in callus cultures of Citrullus colocynthis (L.) Schard. Sci Int 24:75–80

    CAS  Google Scholar 

  • Trejo-Tapia G, Rodríguez-Monroy M (2007) Cellular aggregation in secondary metabolite production in in vitro plant cell cultures. Interciencia 32:669–674

    Google Scholar 

  • Xiong QB, Hase K, Tezuka Y, Namba T, Kadota S (1999) Acteoside inhibits apoptosis in D-galactosamine and lipopolysaccharide-induced liver injury. Life Sci 65:421–430

    Article  CAS  Google Scholar 

  • Yang FY, Pu XP (2006) Protective effect of acteoside on rotenone-induced apoptosis in SH-SY5Y cells. Chin Pharmacol Bull 22:159–164

    CAS  Google Scholar 

  • Zaheri M, Ebrahimi VKS, Cheraghi J (2011) Protective effect of aerial parts extract of scrophularia striataon cadmium and mercury-induced nephrotoxicity in rat. J Babol Univ Med Sci 13:48–53

    Google Scholar 

  • Zeng FS, Wang WW, Zhan YG, Xin Y (2009) Establishment of the callus and cell suspension culture of Elaeagnus angustifolia for the production of condensed tannins. Afr J Biotechnol 8:5005–5010

    CAS  Google Scholar 

  • Zhao J, Liu T, Ma L, Yan M, Zhao Y, Gu ZY, Huang Y (2009) Protective effect of acteoside on immunological liver injury induced by Bacillus Calmette-Guerin plus lipopolysaccharide. Planta Med 75:1463–1469

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by Tarbiat Modares University, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mozafar Sharifi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanpour-Ardestani, N., Sharifi, M. & Behmanesh, M. Establishment of callus and cell suspension culture of Scrophularia striata Boiss.: an in vitro approach for acteoside production. Cytotechnology 67, 475–485 (2015). https://doi.org/10.1007/s10616-014-9705-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-014-9705-4

Keywords

Navigation