Skip to main content

Evaluation of in vitro antioxidant, antimicrobial, genotoxic and anticancer activities of lichen Cetraria islandica

Abstract

In this study, the antioxidant, antimicrobial, genotoxic and anticancer activities of Cetraria islandica methanol extract were determined by using free radical and superoxide anion scavenging activity, reducing power, determination of total phenolic compounds and flavonoid contents, broth microdilution minimal inhibitory concentration against five bacterial and five fungal species, cytokinesis block micronucleus (MN) assay on peripheral blood lymphocytes (PBLs) and the microculture tetrazolium test on FemX (human melanoma) and LS174 (human colon carcinoma) cell lines. As a result of the study, we found that C. islandica methanol extract exhibited moderate free-radical-scavenging activity with IC50 values 678.38 μg/ml. Moreover, the tested extract had effective reducing power and superoxide anion radical scavenging. The minimal inhibitory concentration values against the tested microorganisms ranged from 0.312 to 5 mg/ml. The extract increased MN frequency in a dose dependent manner, but it was significant in higher tested concentrations (50, 100 and 200 μg/ml). No significant differences were observed between NDI values in all treatments and untreated PBLs. In addition, the tested extract had strong anticancer activity towards both cell lines with IC50 values of 22.68 and 33.74 μg/ml. It can be concluded that the tested extract exhibited a certain level of in vitro antioxidant, antimicrobial, genotoxic and anticancer activities.

This is a preview of subscription content, access via your institution.

References

  1. Anandjiwala S, Bagul MS, Parabia M, Rajani M (2008) Evaluation of free radical scavenging activity of an ayurvedic formulation, Panchvalkala. Indian J Pharm Sci 70:31–35

    Article  Google Scholar 

  2. Bačkorova M, Bačkor M, Mikeš J, Jendželovsky R, Fedoročko P (2011) Variable responses of different human cancer cells to the lichen compounds parietin, atranorin, usnic acid and gyrophoric acid. Toxicol In Vitro 25:37–44

    Article  Google Scholar 

  3. Bačkorova M, Jendželovsky R, Kello M, Bačkor M, Mikeš J, Fedoročko P (2012) Lichen secondary metabolites are responsible for induction of apoptosis in HT-29 and A2780 human cancer cell lines. Toxicol In Vitro 26:462–468

    Article  Google Scholar 

  4. Bates ST, Cropsey GW, Caporaso JG, Knight R, Fierer N (2011) Bacterial communities associated with the lichen symbiosis. Appl Environ Microbiol 77:1309–1314

    CAS  Article  Google Scholar 

  5. Behera B, Verma N, Sonone A, Makhija U (2009) Optimization of culture conditions for lichen Usnea ghattensis G. Awasthi to increase biomass and antioxidant metabolite production. Food Technol Biotechnol 47:7–12

    CAS  Google Scholar 

  6. Bown D (2001) Encyclopedia of herbs and their uses. Dorling Kindersley, London

    Google Scholar 

  7. Brodo LM, Sharnoff D, Sharnoff S (2001) Lichens of North America. Yale University Press, New Haven

    Google Scholar 

  8. Chevallier A (1996) The encyclopedia of medicinal plants. Dorling Kindersley, London

    Google Scholar 

  9. Culberson CF (1969) Chemical and botanical guide to lichen products. University of North Carolina Press, Chapel Hill

    Google Scholar 

  10. Dobson F (2000) Lichens an illustrated guide. The Richmond publishing Co. Ltd., England

    Google Scholar 

  11. Dorman HJ, Bachmayer O, Kosar M, Hiltunen R (2004) Antioxidant properties of aqueous extracts from selected Lamiaceae species grown in Turkey. J Agric Food Chem 52:762–770

    CAS  Article  Google Scholar 

  12. Dulger B, Gucin F, Aslan A (1998) Antimicrobial activity of Cetraria islandica (L.) Ac. Turk J Biol 22:111–118

    Google Scholar 

  13. Eroglu EH, Hamzaoglu E, Aksoy A, Budak U, Ozkul Y (2010) In vitro genotoxic effects of four Helichrysum species in human lymphocytes cultures. Biol Res 43:177–182

    Google Scholar 

  14. Farkaš V (2003) Structure and biosynthesis of fungal cell walls: methodological approaches. Folia Microbiol 48:469–478

    Article  Google Scholar 

  15. Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455:81–95

    CAS  Article  Google Scholar 

  16. Fenech M (2007) Cytokinesis-block micronucleus cytome assay. Nat Protoc 2:1084–1104

    CAS  Article  Google Scholar 

  17. Goel M, Dureja P, Rani A, Uniyal PL, Laatsch H (2011) Isolation, characterization and antifungal activity of major constituents of the Himalayan lichen Parmelia reticulate Tayl. J Agric Food Chem 59:2299–2307

    CAS  Article  Google Scholar 

  18. Gordan MH (1990) Food antioxidants. Elsevier, New York

    Google Scholar 

  19. Gulcin I, Oktay M, Kufrevioglu OI, Aslan A (2002) Determination of antioxidant activity of lichen Cetraria islandica (L) Ach. J Ethnopharmacol 79:325–329

    Article  Google Scholar 

  20. Gulcin I, Kurfrevioglu OI, Oktay M, Buyukokuroglu ME (2004) Antioxidant, antimicrobial, antiulcer and analgesic activities of nettle (Urtica dioica L.). J Ethnopharmacol 90:205–215

    Article  Google Scholar 

  21. Heijenoort J (2001) Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology 11:25–36

    Article  Google Scholar 

  22. Hugo WB, Russell AD (1983) Pharmaceutical microbiology, 3rd edn. Blackwell Scientific Publications, Oxford

  23. Huneck S (1991) New results in the chemistry of lichens. Symbiosis 11:225–248

    CAS  Google Scholar 

  24. Ivanov D, Kiselova Y, Ivanova D (2007) Cetraria islandica as a natural source of antioxidants, “Ovidius” University Annals of Medical Science–Pharmacy 5:80–83

  25. Karthikai Devi G, Anantharaman P, Kathiresan K, Balasubramanian T (2011) Antimicrobial activities of the lichen Roccella belangeriana (Awasthi) from mangroves of Gulf of Mannar. Indian J Geo-Mar Sci 40:449–453

    Google Scholar 

  26. Kosanić M, Ranković B, Stanojković T (2012a) Antioxidant, antimicrobial and anticancer activity of 3 Umbilicaria species. J Food Sci 77:T20–T25

    Article  Google Scholar 

  27. Kosanić M, Ranković B, Stanojković T (2012b) Antioxidant, antimicrobial and anticancer activities of three Parmelia species. J Sci Food Agric 92:1909–1916

    Article  Google Scholar 

  28. Kosanić M, Manojlović N, Janković S, Stanojković T, Ranković B (2013) Evernia prunastri and Pseudoevernia furfuraceae lichens and their major metabolites as antioxidant, antimicrobial and anticancer agents. Food Chem Toxicol 53:112–118

    Article  Google Scholar 

  29. Luo H, Ren M, Lim KM, Koh YJ, Wang LS, Hur JS (2006) Antioxidative activity of lichen Thamnolia vermicularis in vitro. Mycobiology 34:124–127

    Article  Google Scholar 

  30. Manojlović N, Vasiljević P, Gritsanapan W, Supabphol R, Manojlović I (2010a) Phytochemical and antioxidant studies of Laurera benguelensis growing in Thailand. Biol Res 43:169–176

    Google Scholar 

  31. Manojlović N, Vasiljević P, Jusković M, Najman S, Janković S, Milenković-Andjelković A (2010b) HPLC analysis and cytotoxic potential of extracts from the lichen, Thamnolia vermicularis var. Subuliformis. J Med Plants Res 4:817–823

    Google Scholar 

  32. Meda A, Lamien CE, Romito M, Millogo J, Nacoulma OG (2005) Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem 91:571–577

    CAS  Article  Google Scholar 

  33. Milošević-Djordjević O, Grujičić D, Arsenijević S, Brkić M, Ugrinović S, Marinković D (2007) Micronuclei in cord blood lymphocytes as a biomarker of transplacental exposure to environmental pollutants. Tohoku J Exp Med 213:231–239

    Article  Google Scholar 

  34. Milošević-Djordjević O, Grujičić D, Joksić G, Marinković D (2011) In vitro evaluation of the genotoxicity of ritodrine and verapamil in human lymphocytes. Hum Exp Toxicol 30:398–405

    Article  Google Scholar 

  35. Milošević-Djordjević O, Stošić I, Stanković M, Grujičić D (2013) Comparative study of genotoxicity and antimutagenicity of methanolic extracts from Teucrium chamaedrys and Teucrium montanum in human lymphocytes using micronucleus assay. Cytotechnology 65:863–869. doi:10.1007/s10616-012-9527-1

    Google Scholar 

  36. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    CAS  Article  Google Scholar 

  37. Muller K (2001) Pharmaceutically relevant metabolites from lichens. Appl Microbiol Biotechnol 56:9–16

    CAS  Article  Google Scholar 

  38. NCCLS (National Committee for Clinical Laboratory Standards) (1998) Reference Method for Broth Dilution Antifungal Susceptibility Testing of Conidium-forming Filamentous Fungi: Proposed Standard M38-P. NCCLS, Wayne, PA, USA

  39. Nishimiki M, Rao NA, Yagi K (1972) The occurrence of super-oxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46:849–853

    Article  Google Scholar 

  40. Oboh G, Ademosun AO (2006) Comparative studies on the ability of crude polyphenols from some nigerian citrus peels to prevent lipid peroxidation: in vitro. Asian J Biochem 1:169–177

    CAS  Article  Google Scholar 

  41. Odabasoglu F, Aslan A, Cakir A, Suleyman H, Karagoz Y, Halici M, Bayir Y (2004) Comparison of antioxidant activity and phenolic content of three lichen species. Phytother Res 18:938–941

    Article  Google Scholar 

  42. Ohno M, Abe T (1991) Rapid colorimetric assay for the quantification of leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). J Immunol Methods 145:199–203

    CAS  Article  Google Scholar 

  43. Oyaizu M (1986) Studies on products of browning reaction prepared from glucosamine. Jpn J Nutr 44:307–314

    CAS  Article  Google Scholar 

  44. Praveen Kumar SV, Prashith Kekuda TR, Vinayaka KS, Sudharshan SJ (2010) Anthelmintic and antioxidant efficacy of two Macrolichens of Ramalinaceae. Phcog J 1:169–176

    Google Scholar 

  45. Purvis OW, Coppins BJ, Hawksworth DL, James PW, Moore DM (1992) The lichen flora of Great Britain and Ireland, Natural History Museum. Publications in association with the British Lichen Society, London

  46. Ranković B, Kosanić M, Stanojković T, Vasiljević P, Manojlović N (2012) Biological activities of Toninia candida and Usnea barbata together with their norstictic acid and usnic acid constituents. Int J Mol Sci 13:14707–14722

    Article  Google Scholar 

  47. Sarker SD, Nahar L, Kumarasamy Y (2007) Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 42:321–324

    CAS  Article  Google Scholar 

  48. Sasikumar JM, Mathew GM, Teepica PDD (2010) Comparative studies on antioxidant activity of methanol extract and flavonoid fraction of Nyctanthes arbortristis leaves. EJEAFChe 9:227–233

    Google Scholar 

  49. Sawa T, Nakao M, Akaike T, Ono K, Maeda H (1999) Alkylperoxyl radical scavenging activity of various flavonoids and other phenolic compounds: Implications for the anti-tumor promoter effect of vegetables. J Agric Food Chem 47:397–492

    CAS  Article  Google Scholar 

  50. Shanab SMM, Shalaby EA, El-Fayoumy EA (2011) Enteromorpha compressa exhibits potent antioxidant activity. J Biomed Biotechnol 2011:726405

    Article  Google Scholar 

  51. Sini H, Devi KS (2004) Antioxidant activities of chloroform extract of Solanum trilobatum. Pharm Biol 42:462–466

    Article  Google Scholar 

  52. Slinkard K, Slingleton VL (1997) Total phenolic analyses: automation and comparison with manual methods. Am J Enol Viticult 28:49–55

    Google Scholar 

  53. Speit G, Linsenmeyer R, Schutz P, Kuehner S (2012) Insensitivity of the in vitro cytokinesis-block micronucleus assay with human lymphocytes for the detection of DNA damage present at the start of the cell culture. Mutagenesis 27:743–747

    CAS  Article  Google Scholar 

  54. Surralles J, Xamena N, Creus A, Marcos R (1995) The suitability of the micronucleus assay in human lymphocytes as a new biomarker of excision repair. Mutat Res 342:43–59

    CAS  Article  Google Scholar 

  55. Triggiani D, Ceccarelli D, Tiezzi A, Pisani T, Munzi S, Gaggi C, Loppi S (2009) Antiproliferative activity of lichen extracts on murine myeloma cells. Biologia 64:59–62

    Article  Google Scholar 

  56. Turkez H, Aydin E (2012) The effects of taurine on permethrin-induced cytogenetic and oxidative damage in cultured human lymphocytes. Arh Hig Rada Toksikol 63:27–34

    CAS  Article  Google Scholar 

  57. Vrablikova H, McEvoy M, Solhaug KA, Bartak M, Gauslaa Y (2006) Annual variation in photo acclimation and photoprotection of the photobiont in the foliose lichen Xanthoria parietina. J Photochem Photobiol 83:151–162

    CAS  Article  Google Scholar 

  58. Vrndić O, Milošević-Djordjević O, Mijatović LJ, Jeremić M, Stošić I, Grujičić D, Živančević-Simonović S (2013) Correlation between micronuclei frequency in peripheral blood lymphocytes and retention of 131-I in thyroid cancer patients. Tohoku J Exp Med 229:115–124

    Article  Google Scholar 

  59. Yang CS, Lambert JD, Sang S (2009) Antioxidative and anti-carcinogenic activities of tea polyphenols. Arch Toxicol 83:11–21

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. III41010; 173032, 175011).

Conflict of interest

The authors have declared that no conflict of interest exists.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Olivera Milošević-Djordjević.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grujičić, D., Stošić, I., Kosanić, M. et al. Evaluation of in vitro antioxidant, antimicrobial, genotoxic and anticancer activities of lichen Cetraria islandica . Cytotechnology 66, 803–813 (2014). https://doi.org/10.1007/s10616-013-9629-4

Download citation

Keywords

  • Cetraria islandica
  • Methanol extract
  • Antioxidant, antimicrobial, genotoxic, anticancer activities