Skip to main content

Assessment of anti-mutagenic, anti-histopathologic and antioxidant capacities of Egyptian bee pollen and propolis extracts

Abstract

Bee pollen and propolis are popular, traditional health foods. The objective of the current study was to investigate the anti-mutagenic, anti-histopathologic and antioxidant effects among water extracts of Egyptian bee pollen (WEBP) and brown powder of water-soluble derivative propolis (WSDP) on cisplatin (CDDP) induced hepatic, renal, testicular and genotoxicity in male albino mice (Mus muscullus), in addition to their effects on the oxidant/antioxidant status in the tested organs. Hepatic, renal and testicular dysfunctions were evaluated histologically; while genotoxicity and cytotoxicity were evaluated by the bone marrow chromosomal aberration assay and mitotic index, respectively. Moreover, oxidative stress was explored via determination of lipid peroxidation, catalase activity and the concentration of the reduced form of glutathione. The treatment of mice with WEBP and WSDP at doses 140 and 8.4 mg/kg b. wt./day, respectively for 14 days simultaneously with CDDP (2.8 mg/kg b. wt.) resulted in significant protection. The positive control animals taken CDDP alone showed toxic histological and genetical manifestations (at P < 0.05) accompanied with an elevated content of peroxidized lipid and lowered catalase activity and glutathione concentration in the homogenate of liver, kidney and testis tissues (at P < 0.001). These toxic side effects in all tested organs were greatly ablated with a significant reduction in lipid peroxidation level and elevation in catalase activity and glutathione concentration (P < 0.001) when using both WEBP and WSDP. On the basis of the present assays, Bee pollen appears more potent in exerting an ameliorative effect and this effect was more pronounced in testis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Abdella E, Ahmed R (2008) Suppression of doxorubicin apoptotic, histopathologic, mutagenic and oxidative stress effect in mice bone marrow and tested tissue by aqueous Rosemary leave extract. Egypt J Zool 51:305–330

    Google Scholar 

  • Ahmed R, Abdella E (2009) Modulatory effect of Rosemary leave aqueous extract on doxorubicin-induced histological lesions, apoptosis and oxidative stress in mice. J Egypt Ger Soc Zool 57C:105–137

    Google Scholar 

  • Aly M, Ashour M, El Nahas S, Abo Zeid M (2003) Genotoxicity and cytotoxicity of the anticancer drugs gemcitabine and cisplatin, separately and in comination: in vivo studies. J Biol Sci 3(11):961–972

    Article  Google Scholar 

  • Amin A, Hamza A (2006) Effects of Roselle and Ginger on cisplatin-induced reproductive toxicity in rats. Asian J Androl 8(5):607–612

    CAS  Article  Google Scholar 

  • Awale S, Shrestha SP, Tezuka Y, Ueda J, Matsushige K, Kadota S (2005) Neoflavonoids and related constituents from Nepalese propolis and their nitric oxide production inhibitory activity. J Nat Prod 68:858–864

    CAS  Article  Google Scholar 

  • Bancroft J, Gamble (2002) Theory and practice of histological techniques, 5th edn. Edinburgh, Churchill Livingstone Pub., pp 172–175

  • Bankova V (2005) Recent trends and important developments in propolis research. Evid Based Complement Alternat Med 2(1):29–32

    Article  Google Scholar 

  • Barros L, Falcão S, Baptista P, Freire C, Vilas-Boas M, Ferreira IC (2008) Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assays. Food Chem 111:61–66

    CAS  Article  Google Scholar 

  • Basnet P, Matsuno T, Neidlein R (1997) Potent free radical scavenging activity of propolis isolated from Brazilian propolis. Z Naturforsch C 52:828–833

    CAS  Google Scholar 

  • Beutler E, Duron O, Kelly B (1963) Improved method for determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  Google Scholar 

  • Campos M, Webby R, Markham K, Mitchall K, Cunha A (2003) Age-induced diminution of free radical scavenging capacity in bee pollens and the contribution of constituent flavonoids. J Agric Food Chem 51(3):742–745

    CAS  Article  Google Scholar 

  • Capucho C, Sette R, Fabrícia de Souza P, Juliana de Castro M, Pigoso A, Barbieri R, Dolder MA, Grasiela DC (2012) Green Brazilian propolis effects on sperm count and epididymis morphology and oxidative stress. Food Chem Toxicol 50(11):3956–3962

    CAS  Article  Google Scholar 

  • Cohen G, Demblec D, Marcus J (1970) Measurement of catalase activity in tissue extracts. Anal Biochem 34:30–38

    CAS  Article  Google Scholar 

  • El-khawaga OM, Salem T, Elshal M (2003) Protective role of Egyptian propolis against tumor in mice. Clin Chim Acta 338:11–16

    CAS  Article  Google Scholar 

  • Eraslan G, Kanbur M, Silici S, Liman B, Altinordulu S, Sarica Z (2009) Evaluation of protective effect of bee pollen against propoxur toxicity in rat. Ecotoxicol Environ Saf 72:931–937

    CAS  Article  Google Scholar 

  • Gardjeva PA, Dimitrova SZ, Kostadinov ID, Murdjeva MA, Peyche LP, Lukanov LK, Stanimirova IV, Alexandrov AS (2007) A study of chemical composition and antimicrobial activity of Bulgarian propolis. Folia Med (Plovdiv) 49:63–69

    Google Scholar 

  • Greene MH (1992) Is cisplatin a human carcinogen? J Natl Cancer Inst 84:306–312

    CAS  Article  Google Scholar 

  • Heo M, Sohn S, Au W (2001) Antigenotoxicity of galangin as cancer chemopreventive agent candidate. Mutat Res 488:135–150

    CAS  Article  Google Scholar 

  • Husain E, Naseem I (2008) Riboflavin-mediated cellular photoinhibition of cisplatin-induced oxidative DNA breakage in mice epidermal keratinocytes. Photodermatol Photoimmunol Photomed 24(6):301–307

    CAS  Article  Google Scholar 

  • Institute of laboratory animal resources (1996) Guide for the care and use of laboratory animals. Commission on life sciences. National research council National academy press, Washington, DC

  • Iraz M, Ozerol E, Gulec M, Tasdemir S, Idiz N, Fadillioglu E, Naziroglu M, kyol O (2006) Protective effect of caffeic acid phenethyl ester (CAPE) administration on cisplatin-induced oxidative damage to liver in rat. Cell Biochem Funct 24:357–361

    CAS  Article  Google Scholar 

  • Konishi S, Sawaya A, Custódio AR, Cunha I, Shimizu M (2004) Influence of solubilising agents on antimicrobial activity of propolis extracts and of hydroalcoholic spray formula. Mensagem Doce 75:22–25

    Google Scholar 

  • Kumazawa S, Yoneda M, Shibata I, Kanaeda J, Hamasaka T, Nakayama T (2003) Direct evidence for the plant origin of Brazilian propolis by the observation of honeybee behavior and phytochemical analysis. Chem Pharm Bull 51(6):740–742

    CAS  Article  Google Scholar 

  • Lee S, Schmitt C (2003) Chemotherapy response and resistance. Curr OpinGenet Dev 13:90–96

    CAS  Article  Google Scholar 

  • Lotfy M (2006) Biological activity of bee propolis in health and disease. Asian Pac J Cancer Prev 7:22–31

    Google Scholar 

  • Lu Y, Cederbaum A (2006) Cisplatin-induced hepatotoxicity is enhanced by elevated expression of cytochrome P4502E1. Toxicol Sci 89:515–523

    CAS  Article  Google Scholar 

  • Mani F, Damasceno H, Novelli E, Martins E, Sforcin J (2006) Propolis: effect of different concentrations, extracts and intake period on seric biochemical variables. J Ethnopharmacol 105:95–98

    Google Scholar 

  • Markham K, Campos M (1996) 7-a-8-O-Methylherbacetin-3-O-sophorosides from bee pollens and some structure/activity observations. Phytochemistry 43(4):763–767

    CAS  Article  Google Scholar 

  • Maruyama H, Sakamoto T, Araki Y, Hara H (2010) Anti-inflammatory effect of bee pollen ethanol extract from Cistus sp. of Spanish on carrageenan-induced rat hind paw edema. BMC Complement Altern Med 10:30–40

    Article  Google Scholar 

  • Mello B, Petrus J, Hubinger M (2010) Concentration of flavonoids and phenolic compounds in aqueous and ethanolic propolis extracts through nanofiltration. J Food Eng 96:533–539

    CAS  Article  Google Scholar 

  • Mitamura T, Matsuno T, Sakamoto S, Maemura M, Kudo H, Suzuki S, Kuwa K, Yoshimura S, Sassa S, Nakayama T, Nagasawa H (1996) Effects of a new clerodane diterpenoid isolated from propolis on chemically induced skin tumors in mice. Anticancer Res 16:2669–2672

    CAS  Google Scholar 

  • Nakajima Y, Tsuruma K, Shimazawa M, Mishima S, Hara H (2009) Comparison of bee products based on assays of antioxidant capacities. BMC Complement Altern Med 9:4–12

    Article  Google Scholar 

  • Naziroglu M, Karaoglu A, Aksoy A (2004) Selenium and high dose vitamin E administration protects cisplatin-induced oxidative damage to renal, liver and lens tissues in rats. Toxicol 195:221–230

    CAS  Article  Google Scholar 

  • Nersesyan A, Muradyan R (2004) Sea-buckthorn juice protects mice against genotoxicty action of cisplatin. Exp Oncol 26(2):153–155

    Google Scholar 

  • Nersesyan A, Perrone E, Roggieri P, Bolognesi C (2003) Genotoxic action of cycloplatam, a new platinum antitumor drug, on mammalian cells in vivo and in vitro. Chemotherapy 49:132–137

    CAS  Article  Google Scholar 

  • Oršolić N, Bašić I (2005) Antitumor, hematostimulative and radioprotective action of water-soluble derivative of propolis (WSDP). Biomed Pharmacother 59:561–570

    Article  Google Scholar 

  • Ozen S, Akyol O, Iraz M, Sogut S, Ozugurlu F, Ozyurt H, Odaci E, Yildirim Z (2004) Role of caffeic acid phenethyl ester, an active component of propolis, against cisplatin-induced nephrotoxicity in rats. J Appl Toxicol 24:27–35

    Article  Google Scholar 

  • Pabla N, Huang S, Mi Q, Daniel R, Dong Z (2008) ATR-Chk2 signaling in P53 activation and DNA damage response during cisplatin-induced apoptosis. J Biol Chem 283(10):6572–6583

    CAS  Article  Google Scholar 

  • Park YK, Ikegaki M, Abreu JAS, Alcici NMF (1998) Study of the preparation of propolis extracts and its applications. Ciênc Tecnologia Aliment 18:313–318

    CAS  Article  Google Scholar 

  • Pietta P (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    CAS  Article  Google Scholar 

  • Pisano C, Pratesi G, Laccabue D, Zunino F, Lo Giudice P, Bellucci A, Pacifici L, Camerini B, Vesci L, Castorina M, Cicuzza S, Tredici G, Marmiroli P, Nicolini G, Galbiati S, Calvani M, Carminati P, Cavaletti G (2003) Paclitaxel and cisplatin-induced neurotoxicity: a protective role of acetyl-l-carnitine. Clin Cancer Res 9:5756–5767

    CAS  Google Scholar 

  • Pressus H, Jarrel S, Scheckenbach R, Lieberman S, Anderson R (1998) Comparative effects of chromium, vanadium and Gymnema sylvestre on sugar-induced blood pressure elevations in SHR. J Am Coll Nutr 17(2):116–123

    Article  Google Scholar 

  • Preston R, Dean B, Galloway S, Holden H, Mc-fee A, Shelby M (1987) Mammalian in vivo cytogenetic assays-analysis of chromosomal aberrations in bone marrow cells. Mutat Res 189:157–165

    CAS  Article  Google Scholar 

  • Rao M, Blane K, Zonneberg M (1985) PC-STAT, one and two way analysis of variance. The University of Georgia Programs Version 1A (C) copyright

  • Saric A, Balog T, Sobocanec S, Kusic B, Sverko V, Rusak G, Likic S, Bubalo D, Pintp B, Reali D, Marotti T (2009) Antioxidant effects of flavonoid from Croatian Cystus incanus L. rich bee pollen. Food Chem Toxicol 47:547–554

    CAS  Article  Google Scholar 

  • Sawhney P, Giammona J, Meistrich M, Richburg J (2005) Cisplatin-induced long-term failure of spermatogenesis in adult C57/Bl/6 J mice. J Androl 26(1):136–145

    CAS  Google Scholar 

  • Shirwaikar A, Deepti Issac D, Malini S (2004) Effect of Aerva lanata on cisplatin and gentamicin models of acute renal failure. J Ethnopharmacol 90:81–86

    Article  Google Scholar 

  • Shukla Y, Taneja P (2002) Antimutagenic effects of garlic extract on chromosomal aberrations. Cancer Lett 176:31–36

    CAS  Article  Google Scholar 

  • Siddhuraju P (2006) The antioxidant activity and free radical-scavenging capacity of phenolics of raw and dry heated moth bean (Vigna aconitifolia) (Jacq.) Marcchal seed extracts. Food Chem 99:149–157

    CAS  Article  Google Scholar 

  • Siddik Z (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22:7265–7279

    CAS  Article  Google Scholar 

  • Souza RM, de Souza MC, Patitucci ML, Silva JF (2007) Evaluation of antioxidant and antimicrobial activities and characterization of bioactive components of two Brazilian propolis samples using a pKa-guided fractionation. Z Naturforsch 62C:801–807

    Google Scholar 

  • Sueishi K, Mishima K, Makino K, Itoh Y, Tsuruya K, Hirakata H, Oishi R (2002) Protection by a radical scavenger edaravone against cisplatin-induced nephrotoxicity in rats. Eur J Pharmacol 451:203–208

    CAS  Article  Google Scholar 

  • Teixeira E, Message D, Negri G, Salatino A, Stringheta P (2008) Seasonal variation, chemical composition and antioxidant activity of Brazilian propolis samples. Evid Based Complement Alternat Med 7:307–315

    Article  Google Scholar 

  • Tohamy A, El Ghor A, El nahas S, Noshy M (2003) Beta-glucan inhibits the genotoxicity of cyclophosphamide, adriamycin and cisplatin. Mutat Res 541:45–53

    CAS  Article  Google Scholar 

  • Volpi N (2004) Separation of flavonoids and phenolic acids from propolis by capillary zone electrophoresis. Electrophoresis 25:1872–1878

    CAS  Article  Google Scholar 

  • Yamaguchi M, Hamamoto R, Uchiyama S, Ishiyama K, Hashimoto K (2006) Anabolic effects of bee pollen Cistus ladaniferus extract on bone components in the femoral diaphyseal and metaphyseal tissues of rats in vitro and in vivo. J Health Sci 52(1):43–49

    CAS  Article  Google Scholar 

  • Yildirim Z, Sogut S, Odaci E, Iraz M, Ozyurt H, Kotuk M, Akyol O (2003) Oral erdosteine administration attenuates cisplatin-induced renal tubular damage in rats. Pharmacol Res 47:149–156

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehab M. Abdella.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Tohamy, A.A., Abdella, E.M., Ahmed, R.R. et al. Assessment of anti-mutagenic, anti-histopathologic and antioxidant capacities of Egyptian bee pollen and propolis extracts. Cytotechnology 66, 283–297 (2014). https://doi.org/10.1007/s10616-013-9568-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-013-9568-0

Keywords

  • Bee pollen
  • Propolis
  • Anti-mutagenic
  • Anti-histopathologic
  • Antioxidant