Advertisement

Cytotechnology

, Volume 66, Issue 2, pp 283–297 | Cite as

Assessment of anti-mutagenic, anti-histopathologic and antioxidant capacities of Egyptian bee pollen and propolis extracts

  • Amany A. Tohamy
  • Ehab M. Abdella
  • Rasha R. Ahmed
  • Yara K. Ahmed
Original Research

Abstract

Bee pollen and propolis are popular, traditional health foods. The objective of the current study was to investigate the anti-mutagenic, anti-histopathologic and antioxidant effects among water extracts of Egyptian bee pollen (WEBP) and brown powder of water-soluble derivative propolis (WSDP) on cisplatin (CDDP) induced hepatic, renal, testicular and genotoxicity in male albino mice (Mus muscullus), in addition to their effects on the oxidant/antioxidant status in the tested organs. Hepatic, renal and testicular dysfunctions were evaluated histologically; while genotoxicity and cytotoxicity were evaluated by the bone marrow chromosomal aberration assay and mitotic index, respectively. Moreover, oxidative stress was explored via determination of lipid peroxidation, catalase activity and the concentration of the reduced form of glutathione. The treatment of mice with WEBP and WSDP at doses 140 and 8.4 mg/kg b. wt./day, respectively for 14 days simultaneously with CDDP (2.8 mg/kg b. wt.) resulted in significant protection. The positive control animals taken CDDP alone showed toxic histological and genetical manifestations (at P < 0.05) accompanied with an elevated content of peroxidized lipid and lowered catalase activity and glutathione concentration in the homogenate of liver, kidney and testis tissues (at P < 0.001). These toxic side effects in all tested organs were greatly ablated with a significant reduction in lipid peroxidation level and elevation in catalase activity and glutathione concentration (P < 0.001) when using both WEBP and WSDP. On the basis of the present assays, Bee pollen appears more potent in exerting an ameliorative effect and this effect was more pronounced in testis.

Keywords

Bee pollen Propolis Anti-mutagenic Anti-histopathologic Antioxidant 

References

  1. Abdella E, Ahmed R (2008) Suppression of doxorubicin apoptotic, histopathologic, mutagenic and oxidative stress effect in mice bone marrow and tested tissue by aqueous Rosemary leave extract. Egypt J Zool 51:305–330Google Scholar
  2. Ahmed R, Abdella E (2009) Modulatory effect of Rosemary leave aqueous extract on doxorubicin-induced histological lesions, apoptosis and oxidative stress in mice. J Egypt Ger Soc Zool 57C:105–137Google Scholar
  3. Aly M, Ashour M, El Nahas S, Abo Zeid M (2003) Genotoxicity and cytotoxicity of the anticancer drugs gemcitabine and cisplatin, separately and in comination: in vivo studies. J Biol Sci 3(11):961–972CrossRefGoogle Scholar
  4. Amin A, Hamza A (2006) Effects of Roselle and Ginger on cisplatin-induced reproductive toxicity in rats. Asian J Androl 8(5):607–612CrossRefGoogle Scholar
  5. Awale S, Shrestha SP, Tezuka Y, Ueda J, Matsushige K, Kadota S (2005) Neoflavonoids and related constituents from Nepalese propolis and their nitric oxide production inhibitory activity. J Nat Prod 68:858–864CrossRefGoogle Scholar
  6. Bancroft J, Gamble (2002) Theory and practice of histological techniques, 5th edn. Edinburgh, Churchill Livingstone Pub., pp 172–175Google Scholar
  7. Bankova V (2005) Recent trends and important developments in propolis research. Evid Based Complement Alternat Med 2(1):29–32CrossRefGoogle Scholar
  8. Barros L, Falcão S, Baptista P, Freire C, Vilas-Boas M, Ferreira IC (2008) Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assays. Food Chem 111:61–66CrossRefGoogle Scholar
  9. Basnet P, Matsuno T, Neidlein R (1997) Potent free radical scavenging activity of propolis isolated from Brazilian propolis. Z Naturforsch C 52:828–833Google Scholar
  10. Beutler E, Duron O, Kelly B (1963) Improved method for determination of blood glutathione. J Lab Clin Med 61:882–888Google Scholar
  11. Campos M, Webby R, Markham K, Mitchall K, Cunha A (2003) Age-induced diminution of free radical scavenging capacity in bee pollens and the contribution of constituent flavonoids. J Agric Food Chem 51(3):742–745CrossRefGoogle Scholar
  12. Capucho C, Sette R, Fabrícia de Souza P, Juliana de Castro M, Pigoso A, Barbieri R, Dolder MA, Grasiela DC (2012) Green Brazilian propolis effects on sperm count and epididymis morphology and oxidative stress. Food Chem Toxicol 50(11):3956–3962CrossRefGoogle Scholar
  13. Cohen G, Demblec D, Marcus J (1970) Measurement of catalase activity in tissue extracts. Anal Biochem 34:30–38CrossRefGoogle Scholar
  14. El-khawaga OM, Salem T, Elshal M (2003) Protective role of Egyptian propolis against tumor in mice. Clin Chim Acta 338:11–16CrossRefGoogle Scholar
  15. Eraslan G, Kanbur M, Silici S, Liman B, Altinordulu S, Sarica Z (2009) Evaluation of protective effect of bee pollen against propoxur toxicity in rat. Ecotoxicol Environ Saf 72:931–937CrossRefGoogle Scholar
  16. Gardjeva PA, Dimitrova SZ, Kostadinov ID, Murdjeva MA, Peyche LP, Lukanov LK, Stanimirova IV, Alexandrov AS (2007) A study of chemical composition and antimicrobial activity of Bulgarian propolis. Folia Med (Plovdiv) 49:63–69Google Scholar
  17. Greene MH (1992) Is cisplatin a human carcinogen? J Natl Cancer Inst 84:306–312CrossRefGoogle Scholar
  18. Heo M, Sohn S, Au W (2001) Antigenotoxicity of galangin as cancer chemopreventive agent candidate. Mutat Res 488:135–150CrossRefGoogle Scholar
  19. Husain E, Naseem I (2008) Riboflavin-mediated cellular photoinhibition of cisplatin-induced oxidative DNA breakage in mice epidermal keratinocytes. Photodermatol Photoimmunol Photomed 24(6):301–307CrossRefGoogle Scholar
  20. Institute of laboratory animal resources (1996) Guide for the care and use of laboratory animals. Commission on life sciences. National research council National academy press, Washington, DCGoogle Scholar
  21. Iraz M, Ozerol E, Gulec M, Tasdemir S, Idiz N, Fadillioglu E, Naziroglu M, kyol O (2006) Protective effect of caffeic acid phenethyl ester (CAPE) administration on cisplatin-induced oxidative damage to liver in rat. Cell Biochem Funct 24:357–361CrossRefGoogle Scholar
  22. Konishi S, Sawaya A, Custódio AR, Cunha I, Shimizu M (2004) Influence of solubilising agents on antimicrobial activity of propolis extracts and of hydroalcoholic spray formula. Mensagem Doce 75:22–25Google Scholar
  23. Kumazawa S, Yoneda M, Shibata I, Kanaeda J, Hamasaka T, Nakayama T (2003) Direct evidence for the plant origin of Brazilian propolis by the observation of honeybee behavior and phytochemical analysis. Chem Pharm Bull 51(6):740–742CrossRefGoogle Scholar
  24. Lee S, Schmitt C (2003) Chemotherapy response and resistance. Curr OpinGenet Dev 13:90–96CrossRefGoogle Scholar
  25. Lotfy M (2006) Biological activity of bee propolis in health and disease. Asian Pac J Cancer Prev 7:22–31Google Scholar
  26. Lu Y, Cederbaum A (2006) Cisplatin-induced hepatotoxicity is enhanced by elevated expression of cytochrome P4502E1. Toxicol Sci 89:515–523CrossRefGoogle Scholar
  27. Mani F, Damasceno H, Novelli E, Martins E, Sforcin J (2006) Propolis: effect of different concentrations, extracts and intake period on seric biochemical variables. J Ethnopharmacol 105:95–98Google Scholar
  28. Markham K, Campos M (1996) 7-a-8-O-Methylherbacetin-3-O-sophorosides from bee pollens and some structure/activity observations. Phytochemistry 43(4):763–767CrossRefGoogle Scholar
  29. Maruyama H, Sakamoto T, Araki Y, Hara H (2010) Anti-inflammatory effect of bee pollen ethanol extract from Cistus sp. of Spanish on carrageenan-induced rat hind paw edema. BMC Complement Altern Med 10:30–40CrossRefGoogle Scholar
  30. Mello B, Petrus J, Hubinger M (2010) Concentration of flavonoids and phenolic compounds in aqueous and ethanolic propolis extracts through nanofiltration. J Food Eng 96:533–539CrossRefGoogle Scholar
  31. Mitamura T, Matsuno T, Sakamoto S, Maemura M, Kudo H, Suzuki S, Kuwa K, Yoshimura S, Sassa S, Nakayama T, Nagasawa H (1996) Effects of a new clerodane diterpenoid isolated from propolis on chemically induced skin tumors in mice. Anticancer Res 16:2669–2672Google Scholar
  32. Nakajima Y, Tsuruma K, Shimazawa M, Mishima S, Hara H (2009) Comparison of bee products based on assays of antioxidant capacities. BMC Complement Altern Med 9:4–12CrossRefGoogle Scholar
  33. Naziroglu M, Karaoglu A, Aksoy A (2004) Selenium and high dose vitamin E administration protects cisplatin-induced oxidative damage to renal, liver and lens tissues in rats. Toxicol 195:221–230CrossRefGoogle Scholar
  34. Nersesyan A, Muradyan R (2004) Sea-buckthorn juice protects mice against genotoxicty action of cisplatin. Exp Oncol 26(2):153–155Google Scholar
  35. Nersesyan A, Perrone E, Roggieri P, Bolognesi C (2003) Genotoxic action of cycloplatam, a new platinum antitumor drug, on mammalian cells in vivo and in vitro. Chemotherapy 49:132–137CrossRefGoogle Scholar
  36. Oršolić N, Bašić I (2005) Antitumor, hematostimulative and radioprotective action of water-soluble derivative of propolis (WSDP). Biomed Pharmacother 59:561–570CrossRefGoogle Scholar
  37. Ozen S, Akyol O, Iraz M, Sogut S, Ozugurlu F, Ozyurt H, Odaci E, Yildirim Z (2004) Role of caffeic acid phenethyl ester, an active component of propolis, against cisplatin-induced nephrotoxicity in rats. J Appl Toxicol 24:27–35CrossRefGoogle Scholar
  38. Pabla N, Huang S, Mi Q, Daniel R, Dong Z (2008) ATR-Chk2 signaling in P53 activation and DNA damage response during cisplatin-induced apoptosis. J Biol Chem 283(10):6572–6583CrossRefGoogle Scholar
  39. Park YK, Ikegaki M, Abreu JAS, Alcici NMF (1998) Study of the preparation of propolis extracts and its applications. Ciênc Tecnologia Aliment 18:313–318CrossRefGoogle Scholar
  40. Pietta P (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042CrossRefGoogle Scholar
  41. Pisano C, Pratesi G, Laccabue D, Zunino F, Lo Giudice P, Bellucci A, Pacifici L, Camerini B, Vesci L, Castorina M, Cicuzza S, Tredici G, Marmiroli P, Nicolini G, Galbiati S, Calvani M, Carminati P, Cavaletti G (2003) Paclitaxel and cisplatin-induced neurotoxicity: a protective role of acetyl-l-carnitine. Clin Cancer Res 9:5756–5767Google Scholar
  42. Pressus H, Jarrel S, Scheckenbach R, Lieberman S, Anderson R (1998) Comparative effects of chromium, vanadium and Gymnema sylvestre on sugar-induced blood pressure elevations in SHR. J Am Coll Nutr 17(2):116–123CrossRefGoogle Scholar
  43. Preston R, Dean B, Galloway S, Holden H, Mc-fee A, Shelby M (1987) Mammalian in vivo cytogenetic assays-analysis of chromosomal aberrations in bone marrow cells. Mutat Res 189:157–165CrossRefGoogle Scholar
  44. Rao M, Blane K, Zonneberg M (1985) PC-STAT, one and two way analysis of variance. The University of Georgia Programs Version 1A (C) copyrightGoogle Scholar
  45. Saric A, Balog T, Sobocanec S, Kusic B, Sverko V, Rusak G, Likic S, Bubalo D, Pintp B, Reali D, Marotti T (2009) Antioxidant effects of flavonoid from Croatian Cystus incanus L. rich bee pollen. Food Chem Toxicol 47:547–554CrossRefGoogle Scholar
  46. Sawhney P, Giammona J, Meistrich M, Richburg J (2005) Cisplatin-induced long-term failure of spermatogenesis in adult C57/Bl/6 J mice. J Androl 26(1):136–145Google Scholar
  47. Shirwaikar A, Deepti Issac D, Malini S (2004) Effect of Aerva lanata on cisplatin and gentamicin models of acute renal failure. J Ethnopharmacol 90:81–86CrossRefGoogle Scholar
  48. Shukla Y, Taneja P (2002) Antimutagenic effects of garlic extract on chromosomal aberrations. Cancer Lett 176:31–36CrossRefGoogle Scholar
  49. Siddhuraju P (2006) The antioxidant activity and free radical-scavenging capacity of phenolics of raw and dry heated moth bean (Vigna aconitifolia) (Jacq.) Marcchal seed extracts. Food Chem 99:149–157CrossRefGoogle Scholar
  50. Siddik Z (2003) Cisplatin: mode of cytotoxic action and molecular basis of resistance. Oncogene 22:7265–7279CrossRefGoogle Scholar
  51. Souza RM, de Souza MC, Patitucci ML, Silva JF (2007) Evaluation of antioxidant and antimicrobial activities and characterization of bioactive components of two Brazilian propolis samples using a pKa-guided fractionation. Z Naturforsch 62C:801–807Google Scholar
  52. Sueishi K, Mishima K, Makino K, Itoh Y, Tsuruya K, Hirakata H, Oishi R (2002) Protection by a radical scavenger edaravone against cisplatin-induced nephrotoxicity in rats. Eur J Pharmacol 451:203–208CrossRefGoogle Scholar
  53. Teixeira E, Message D, Negri G, Salatino A, Stringheta P (2008) Seasonal variation, chemical composition and antioxidant activity of Brazilian propolis samples. Evid Based Complement Alternat Med 7:307–315CrossRefGoogle Scholar
  54. Tohamy A, El Ghor A, El nahas S, Noshy M (2003) Beta-glucan inhibits the genotoxicity of cyclophosphamide, adriamycin and cisplatin. Mutat Res 541:45–53CrossRefGoogle Scholar
  55. Volpi N (2004) Separation of flavonoids and phenolic acids from propolis by capillary zone electrophoresis. Electrophoresis 25:1872–1878CrossRefGoogle Scholar
  56. Yamaguchi M, Hamamoto R, Uchiyama S, Ishiyama K, Hashimoto K (2006) Anabolic effects of bee pollen Cistus ladaniferus extract on bone components in the femoral diaphyseal and metaphyseal tissues of rats in vitro and in vivo. J Health Sci 52(1):43–49CrossRefGoogle Scholar
  57. Yildirim Z, Sogut S, Odaci E, Iraz M, Ozyurt H, Kotuk M, Akyol O (2003) Oral erdosteine administration attenuates cisplatin-induced renal tubular damage in rats. Pharmacol Res 47:149–156CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Amany A. Tohamy
    • 1
  • Ehab M. Abdella
    • 2
  • Rasha R. Ahmed
    • 2
  • Yara K. Ahmed
    • 2
  1. 1.Faculty of Science, Zoology DepartmentHelwan UniversityHelwanEgypt
  2. 2.Faculty of Science, Zoology DepartmentBeni-Suef UniversityBeni-SuefEgypt

Personalised recommendations