Skip to main content
Log in

The effect of carvacrol on healthy neurons and N2a cancer cells: some biochemical, anticancerogenicity and genotoxicity studies

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Carvacrol (CVC) is a phenolic monoterpene present in many essential oils of medicinal and aromatic plants and has attracted attention because of its beneficial biological activities. To date, although various biological activities of CVC have been demonstrated, its neurotoxicity on cultured primary rat neurons and N2a neuroblastoma cells has never been explored. Therefore, in this present study, we aimed to describe in vitro antiproliferative and/or cytotoxic properties (by 3-(4,5 dimetylthiazol -2-yl)-2,5 diphenlytetrazolium bromide (MTT) test), genotoxic damage potentials (by single cell gel electrophoresis (SCGE) or Comet assay) and antioxidant activities (by total antioxidant capacity (TAC) and total oxidative stress (TOS) analysis) of CVC in vitro. Dose (0–400 mg/L) dependent effects of CVC were tested on both cultured primary rat neurons and N2a neuroblastoma cells. Statistical analysis of MTT assay results indicated significant (p < 0.05) decreases of cell proliferation rates in both cell types treated with CVC at 200 and 400 mg/L. On the other hand, the mean values of the total scores of cells showing DNA damage (for comet assay) was not found significantly different from the control values for both cells (p > 0.05). In addition, our results indicated that 10, 25 and 50 mg/L of CVC treatment caused increases of TAC levels in cultured primary rat neurons but not in the N2a cell line. However, CVC treatments led to increases of TOS levels in cultured primary rat neurons at only 400 mg/L while they led to increases of TOS levels in N2a neuroblastoma cells at 200 and 400 mg/L. The present findings demonstrated that CVC could be a source of antioxidant and chemopreventive activities to be studied on cancer diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agullo G, Gamet-Payrastre L, Manenti S, Viala C, Remesy C, Chap H, Payrastre B (1997) Relationship between flavonoid structure and inhibition of phosphatidylinositol 3-kinase: a comparison with tyrosine kinase and protein kinase C inhibition. Biochem Pharmaco 53:1649–1657

    Article  CAS  Google Scholar 

  • Amiri H, Yazdi HL, Dehshiri M, Eghbali D, Mohammadi A, Zarei A (2011) Essential oils composition and antioxidant properties of three thymus species. Planta Med 77:1294

    Google Scholar 

  • Anonymous (1985) National Institute of Health, Principles of Laboratory Animal Care, USA 85:1–112

  • Aristatile B, Al-Numair KS, Al-Assaf AH, Pugalendi KV (2011) Pharmacological effect of carvacrol on D: -galactosamine-induced mitochondrial enzymes and DNA damage by single-cell gel electrophoresis. J Nat Med 65:568–577

    Google Scholar 

  • Arrebola ML, Navarro MC, Jimenez J, Ocana FA (1994) Yield and composition of the essential oil of Thymus serpylloides subsp. serpylloides. Phytochemistry 36:67–72

    Article  CAS  Google Scholar 

  • Arunasree KM (2010) Anti-proliferative effects of carvacrol on a human metastatic breast cancer cell line, MDA-MB 231. Phytomedicine 17:581–588

    Article  CAS  Google Scholar 

  • Aydin E, Turkez H (2011) Antioxidant and genotoxicity screening of aqueous extracts of four lichens collected from North East Anatolia. Fresen Environ Bull 20:2085–2091

    CAS  Google Scholar 

  • Aydin E, Turkez H (2012) Effects of lichenic extracts (Bryoria capillaris, Peltigera rufescens and Xanthoria elegans) on human blood cells: a cytogenetic and biochemical study. Fresen Environ Bull 20:2992–2998

    Google Scholar 

  • Azirak S, Rencuzogullari E (2008) The in vivo genotoxic effects of carvacrol and thymol in rat bone marrow cells. Environ Toxicol 23:728–735

    Article  CAS  Google Scholar 

  • Betts DR, Cohen N, Leibundgut KE, Kühne T, Caflisch U, Greiner J, Traktenbrot L, Niggli FK (2005) Characterization of karyotypic events and evolution in neuroblastoma. Pediatr Blood Cancer 44:147–157

    Article  Google Scholar 

  • Borek C (2004) Dietary antioxidants and human cancer. Integrative Cancer Ther 3:333–341

    Article  CAS  Google Scholar 

  • Borek C, Pardo F (2002) Vitamin E and apoptosis: a dual role. In: Pasquier C (ed) Biennial Meeting of the Society for Free Radicals Research International. Paris, France, Bologna, Italy; Monduzzi Editore; 1994:327-331

  • Brusselmans K, Vrolix R, Verhoeven G, Swinnen JV (2005) Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. J Biol Chem 280:5636–5645

    Article  CAS  Google Scholar 

  • Cadet JL, Brannock C (1998) Free radicals and the pathobiology of brain dopamine systems. Neurochem Int 32:117–131

    Article  CAS  Google Scholar 

  • Cai Y, Luo Q, Sun M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci 74:2157–2184

    Article  CAS  Google Scholar 

  • Chen ZP, Schell JB, Ho CT, Chen KY (1998) Green tea epigallocatechin gallate shows a pronounced growth inhibitory effect on cancerous cells but not on their normal counterparts. Cancer Lett 129:173–179

    Article  CAS  Google Scholar 

  • Chen D, Daniel KG, Chen MS, Kuhn DJ, Landis-Piwowar KR, Dou QP (2005) Dietary flavonoids as proteasome inhibitors and apoptosis inducers in human leukemia cells. Biochem Pharmacol 69:1421–1432

    Article  CAS  Google Scholar 

  • Constantinou A, Mehta R, Runyan C, Rao K, Vaughan A, Moon R (1995) Flavonoids as DNA topoisomerase antagonists and poisons: structure-activity relationships. J Nat Prod 58:217–225

    Article  CAS  Google Scholar 

  • Daikhin Y, Yudkoff M (2000) Compartmentation of brain glutamate metabolism in neurons and glia. J Nutr 130:1026–1031

    Google Scholar 

  • Das GP, Shaik AP, Jamil K (2006) Cytotoxicity and genotoxicity induced by the pesticide profenofos on cultured human peripheral blood lymphocytes. Drug Chem Toxicol 29:313–322

    Article  CAS  Google Scholar 

  • Dirican E, Turkez H, Toğar B (2012) Modulatory effects of Thymbra spicata L. different extracts against the mercury induced genotoxicity in human lymphocytes in vitro. Cytotechnology 64:181–186

    Article  CAS  Google Scholar 

  • Erel O (2004) A novel automated method to measure total antioxidant response against potent free radical reactions. Clin Biochem 37:112–119

    Article  CAS  Google Scholar 

  • Erel O (2005) A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38:1103–1111

    Article  CAS  Google Scholar 

  • Esiashvili N, Goodman M, Ward K, Marcus RB Jr, Johnstone PA (2007) Neuroblastoma in adults: incidence and survival analysis based on SEER data. Pediatr Blood Cancer 49:41–46

    Article  Google Scholar 

  • Gany ZSA, Mahdi MF (2008) Cytotoxic assay of Nigella sativa leaf callus extract (thymol) on hep-2 cell line using ELISA assay. Iraqi J Pharm Sci 17:63–67

    Google Scholar 

  • Giweli A, Džamić AM, Soković M, Ristić MS, Marin PD (2012) Antimicrobial and antioxidant activities of essential oils of Satureja thymbra growing wild in Libya. Molecules 17:4836–4850

    Article  CAS  Google Scholar 

  • Guimarães AG, Oliveira GF, Melo MS, Cavalcanti SC, Antoniolli AR, Bonjardim LR, Silva FA, Santos JP, Rocha RF, Moreira JC, Araújo AA, Gelain DP, Quintans-Júnior LJ (2010) Bioassay guided evaluation of antioxidant and antinociceptive activities of carvacrol. Basic Clin Pharmacol Toxicol 107:949–957

    Article  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    Article  CAS  Google Scholar 

  • Hari Babu L, Perumal S, Balasubramanian MP (2012) Myrtenal, a natural monoterpene, down-regulates TNF-α expression and suppresses carcinogen-induced hepatocellular carcinoma in rats. Mol Cell Biochem 369:183–193

    Article  CAS  Google Scholar 

  • He L, Mo H, Hadisusilo S, Qureshi AA, Elson CE (1997) Isoprenoids suppress the growth of murine B16 melanomas in vitro and in vivo. J Nutr 127:668–674

    CAS  Google Scholar 

  • Heaton PR, Ransley R, Charlton CJ (2002) Application of single-cell gel electrophoresis (comet) assay for assessing levels of DNA damage in canine and feline leukocytes. J Nutr 132:1598S–1603S

    CAS  Google Scholar 

  • Horvathova E, Turcaniova V, Slamenova D (2007) Comparative study of DNA-damaging and DNA-protective effects of selected components of essential plant oils in human leukemic cells K562. Neoplasma 54:478–483

    Google Scholar 

  • Ipek E, Tüylü BA, Zeytinoğlu H (2003) Effects of carvacrol on sister chromatid exchanges in human lymphocyte cultures. Cytotechnology 43:145–148

    Article  Google Scholar 

  • Ipek E, Zeytinoglu H, Okay S, Tuylu BA, Kurkcuoglu M, Baser KHC (2005) Genotoxicity and antigenotoxicity of Origanum oil and carvacrol evaluated by Ames Salmonella/microsomal test. Food Chem 93:551–556

    Article  CAS  Google Scholar 

  • Jaafari A, Tilaoui M, Mouse HA, Mbark LA, Aboufatima R, Chait A, Lepoivre M, Zyad A (2012) Comparative study of the antitumor effect of natural monoterpenes: relationship to cell cycle analysis. Rev Bras Farmacogn (in press) (doi:10.1590/S0102-695X2012005000021)

  • Joca HC, Cruz-Mendes Y, Oliveira-Abreu K, Maia-Joca RP, Barbosa R, Lemos TL, Lacerda Beirão PS, Leal-Cardoso JH (2012) Carvacrol decreases neuronal excitability by inhibition of voltage-gated sodium channels. J Nat Prod 75:1511–1517

    Article  CAS  Google Scholar 

  • Kang J, Kamal A, Burrows FJ, Evers BM, Chung DH (2006) Inhibition of neuroblastoma xenograft growth by Hsp90 inhibitors. Anticancer Res 26:1903–1908

    CAS  Google Scholar 

  • Kazi A, Wang Z, Kumar N, Falsetti SC, Chan TH, Dou QP (2004) Structure activity relationships of synthetic analogs of (−)-epigallocatechin-3-gallate as proteasome inhibitors. Anticancer Res 24:943–954

    CAS  Google Scholar 

  • Kim SH, Park EJ, Lee CR, Chun JN, Cho NH, Kim IG, Lee S, Kim TW, Park HH, So I, Jeon JH (2012) Geraniol induces cooperative interaction of apoptosis and autophagy to elicit cell death in PC-3 prostate cancer cells. Int J Oncol 40:1683–1690

    CAS  Google Scholar 

  • Kizilian N, Wilkins RC, Reinhardt P (1999) Silverstained comet assay for detection of apoptosis. Biotechniques 27:926–930

    CAS  Google Scholar 

  • Koparal AT, Zeytinoglu M (2003) Effects of carvacrol on a human non-small cell lung cancer (NSCLC) cell line, A549. Cytotechnology 43:149–154

    Article  Google Scholar 

  • Kusano C, Ferrari B (2008) Total antioxidant capacity: a biomarker in biomedical and nutritional studies. J Cell Mol Biol 7:1–15

    CAS  Google Scholar 

  • Lagouri V, Blekas G, Tsimidou M, Kokkini S, Boskou D (1993) Composition and antioxidant activity of essential oils from oregano plants grown wild in Greece. Z. Lebensm-Unters-Forsch 197:20–23

    Article  CAS  Google Scholar 

  • Lepley DM, Li B, Birt DF, Pelling JC (1996) The chemopreventive flavonoid apigenin induces G2/M arrest in keratinocytes. Carcinogenesis 17:2367–2375

    Article  CAS  Google Scholar 

  • Lima CF, Carvalho F, Fernandes E, Bastos ML, Santos - Gomes PC, Fernandes-Ferreira M, Pereira-Wilson C (2004) Evaluation of toxic/protective effects of the essential oil of Salvia officinalis on freshly isolated rat hepatocytes. Toxicol In Vitro 18:457–465

    Article  CAS  Google Scholar 

  • Loza-Tavera H (1999) Monoterpenes in essential oils. Biosynthesis and properties. Adv Exp Med Biol 464:49–62

    Article  CAS  Google Scholar 

  • Matthay KK (1997) Neuroblastoma: biology and therapy. Oncology 11:1857–1866

    CAS  Google Scholar 

  • Mecocci P, Mac Garvey U, Beal MF (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 36:747–751

    Article  CAS  Google Scholar 

  • Miguel MG, Dandlen SA, Figueiredo AC, Pedro LG, Barroso JG, Marques MH (2009) Comparative evaluation of the antioxidant activities of thymol and carvacrol and the corresponding β-cyclodextrin complexes. ISHS Acta Hortic 853:363–368

    Google Scholar 

  • Navarra M, Celano M, Maiuolo J, Schenone S, Botta M, Angelucci A, Bramanti P, Russo D (2010) Antiproliferative and pro-apoptotic effects afforded by novel Src-kinase inhibitors in human neuroblastoma cells. BMC Cancer 10:602

    Article  CAS  Google Scholar 

  • Park JR, Eggert A, Caron H (2008) Neuroblastoma: biology, prognosis, and treatment. Pediatr Clin North Am 55:97–120

    Article  Google Scholar 

  • Plaumann B, Fritsche M, Rimpler H, Brandner G, Hess RD (1996) Flavonoids activate wild-type p53. Oncogene 13:1605–1614

    CAS  Google Scholar 

  • Rabi T, Bishayee A (2009) d -Limonene sensitizes docetaxel-induced cytotoxicity in human prostate cancer cells: generation of reactive oxygen species and induction of apoptosis. J Carcinog 8:1–9

    Article  Google Scholar 

  • Rassouli FB, Matin MM, Iranshahi M, Bahrami AR (2011) Investigating the cytotoxic and apoptosis inducing effects of monoterpenoid stylosin in vitro. Fitoterapia 82:742–749

    Article  CAS  Google Scholar 

  • Ravizza R, Gariboldi MB, Molteni R, Monti E (2008) Linalool, a plant-derived monoterpene alcohol, reverses doxorubicin resistance in human breast adenocarcinoma cells. Oncol Rep 20:625–630

    CAS  Google Scholar 

  • Saleha Banu B, Dana Devi K, Mahboob M (2000) In vivo genotoxic effect of zinc sulfate in mouse peripheral blood leukocytes using comet assay. Drug Chem Toxicol 24:63–73

    Article  Google Scholar 

  • Salminen A, Lehtonen M, Suuronen T, Kaarniranta K, Huuskonen J (2008) Terpenoids: natural inhibitors of NF-Kappa B signaling with anti-inflammatory and anticancer potential. Cell Mol Life Sci 65:2979–2999

    Article  CAS  Google Scholar 

  • Shon MY, Choi SD, Kahng GG, Nam SH, Sung NJ (2004) Antimutagenic, antioxidant and free radical scavenging activity of ethyl acetate extracts from white, yellow and red onions. Food Chem Toxicol 42:659–666

    Article  CAS  Google Scholar 

  • Sigounas G, Anagnostu A, Steiner M (1997) Dl-alpha tocopherol induces apoptosis in erythroleukemia, prostate and breast cancer cells. Nutr Cancer 28:30–35

    Article  CAS  Google Scholar 

  • Silva SL, Figueiredo PM, Yano T (2007) Cytotoxic evaluation of essential oil from Zanthoxylum rhoifolium Lam. leaves. Acta Amaz 37:281–286

    Google Scholar 

  • Singh NP, McCoy MT, Tice RR (1998) A simple technique for quantitation of low level of DNA damage in individual cells. Exp Cell Res 17:184–191

    Google Scholar 

  • Sivas H, Tomsuk O (2011) Antiproliferative and apoptotic effects of the essential oil of Origanum onites and carvacrol on Hep-G2 cells. Anadolu Univ J Sci Technol C Life Sci Biotechnol 1:171–180

    Google Scholar 

  • Slamenová D, Horváthová E, Sramková M, Marsálková L (2007) DNA-protective effects of two components of essential plant oils carvacrol and thymol on mammalian cells cultured in vitro. Neoplasma 54:108–112

    Google Scholar 

  • Slamenova D, Horvathova E, Chalupa I, Wsolova L, Navarova J (2011) Ex vivo assessment of protective effects of carvacrol against DNA lesions induced in primary rat cells by visible light excited methylene blue (VL+MB). Neoplasma 58:14–19

    Google Scholar 

  • Soares PR, de Oliveira PL, de Oliveira CM, Kato L, Guillo LA (2012) In vitro antiproliferative effects of the indole alkaloid vallesiachotamine on human melanoma cells. Arch Pharm Res 35:565–571

    Article  CAS  Google Scholar 

  • Stammati A, Bonsi P, Zucco F, Moezelaar R, Alakomi HL, Von Wright A (1999) Toxicity of selected plant volatiles in microbial and mammalian short-term assays. Food Chem Toxicol 37:813–823

    Article  CAS  Google Scholar 

  • Taper HS, Jamison JM, Gilloteax J, Summers JL, Calderon PB (2004) Inhibition of the development of metastases by dietary vitamin C:K3 combination. Life Sci 75:955–967

    Article  CAS  Google Scholar 

  • Tice RR, Agurell E, Anderson D (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35:206–221

    Article  CAS  Google Scholar 

  • Turkez H (2011) The role of ascorbic acid on titanium dioxide-induced genetic damage assessed by the comet assay and cytogenetic tests. Exp Toxicol Pathol 63:453–457

    Article  CAS  Google Scholar 

  • Turkez H, Aydin E (2012) Anti-genotoxic role of eicosapentaenoic acid against imazalil-induced DNA damage in vitro. Toxicol Ind Health (in press) (10.1177/0748233711433943)

  • Turkez H, Geyikoglu F (2010) Boric acid: a potential chemoprotective agent against aflatoxin b(1) toxicity in human blood. Cytotechnology 62:157–165

    Article  CAS  Google Scholar 

  • Turkez H, Aydin E, Aslan A (2012a) Xanthoria elegans (Link) (lichen) extract counteracts DNA damage and oxidative stress of mitomycin C in human lymphocytes. Cytotechnology 64:679–686

    Article  CAS  Google Scholar 

  • Turkez H, Geyikoğlu F, Dirican E, Tatar A (2012b) In vitro studies on chemoprotective effect of borax against aflatoxin B1-induced genetic damage in human lymphocytes. Cytotechnology 64:607–612

    Article  CAS  Google Scholar 

  • Turkez H, Geyikoglu F, Mokhtar YI, Togar B (2012c) Eicosapentaenoic acid protects against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced hepatic toxicity in cultured rat hepatocytes. Cytotechnology 64:15–25

    Article  CAS  Google Scholar 

  • Turkez H, Geyikoglu F, Yousef MI, Celik K, Bakir TO (2012d) Ameliorative effect of supplementation with l-glutamine on oxidative stress, DNA damage, cell viability and hepatotoxicity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in rat hepatocyte cultures. Cytotechnology 64:687–699

    Article  CAS  Google Scholar 

  • Turkez H, Togar B, Polat E (2012e) Olive leaf extract modulates permethrin induced genetic and oxidative damage in rats. Cytotechnology 64:459–464

    Article  Google Scholar 

  • Ultee A, Kets EP, Smid EJ (1999) Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl Environ Microbiol 65:4606–4610

    CAS  Google Scholar 

  • Undeger U, Başaran A, Degen GH, Başaran N (2009) Antioxidant activities of major thyme ingredients and lack of (oxidative) DNA damage in V79 Chinese hamster lung fibroblast cells at low levels of carvacrol and thymol. Food Chem Toxicol 47:2037–2043

    Google Scholar 

  • Wu CS, Chen YJ, Chen JJ, Shieh JJ, Huang CH, Lin PS, Chang GC, Chang JT, Lin CC (2012) Terpinen-4-ol induces apoptosis in human nonsmall cell lung cancer in vitro and in vivo. Evid Based Complement Alternat Med 2012:818261

    Google Scholar 

  • Yin QH, Yan FX, Zu XY, Wu YH, Wu XP, Liao MC, Deng SW, Yin LL, Zhuang YZ (2012) Anti-proliferative and pro-apoptotic effect of carvacrol on human hepatocellular carcinoma cell line HepG-2. Cytotechnology 64:43–51

    Article  CAS  Google Scholar 

  • Yu H, Zhang ZL, Chen J, Pei A, Hua F, Qian X, He J, Liu CF, Xu X (2012) Carvacrol, a food-additive, provides neuroprotection on focal cerebral ischemia/reperfusion injury in mice. PLoS ONE 7:e33584

    Article  CAS  Google Scholar 

  • Zeytinoğlu H, Incesu Z, Baser KH (2003) Inhibition of DNA synthesis by carvacrol in mouse myoblast cells bearing a human N-RAS oncogene. Phytomedicine 10:292–299

    Article  Google Scholar 

  • Zimmermann KC, Bonzon C, Green DR (2001) The machinery of programmed cell death. Pharmacol Ther 92:57–70

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elanur Aydın.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aydın, E., Türkez, H. & Keleş, M.S. The effect of carvacrol on healthy neurons and N2a cancer cells: some biochemical, anticancerogenicity and genotoxicity studies. Cytotechnology 66, 149–157 (2014). https://doi.org/10.1007/s10616-013-9547-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-013-9547-5

Keywords

Navigation