Skip to main content
Log in

Surface antigenic profiling of stem cells from human omentum fat in comparison with subcutaneous fat and bone marrow

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Omentum fat derived stem cells have emerged as an alternative and accessible therapeutic tool in recent years in contrast to the existing persuasive sources of stem cells, bone marrow and subcutaneous adipose tissue. However, there has been a scanty citation on human omentum fat derived stem cells. Furthermore, identification of specific cell surface markers among aforesaid sources is still controversial. In lieu of this existing perplexity, the current research work aims at signifying omentum fat as a ground-breaking source of stem cells by surface antigenic profiling of stem cell population. In this study, we examined and compared the profiling of cell surface antigenic expressions of hematopoietic stem cells, mesenchymal stem cells, cell adhesion molecules and other unique markers such as ABCG2, ALDH and CD 117 in whole cell population of human omentum fat, subcutaneous fat and bone marrow. The phenotypic characterization through flowcytometry revealed the positive expressions of CD 34, CD 45, CD 133, HLADR, CD 90, CD 105, CD 73, CD 29, CD 13, CD 44, CD 54, CD 31, ALDH and CD 117 in all sources. The similarities between the phenotypic expressions of omentum fat derived stem cells to that of subcutaneous fat and bone marrow substantiates that identification of ultimate source for curative therapeutics is arduous to assess. Nevertheless, these results support the potential therapeutic application of omentum fat derived stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aust L, Devlin B, Foster SJ, Halvorsen YD (2004) Yield of human adipose derived adult stem cells from liposuction aspirates. Cytotherapy 6:7–14

    Article  CAS  Google Scholar 

  • Baglioni S, Francalanci M, Squecco R, Lombardi A, Cantini G, Angeli R, Gelmini S, Guasti D, Benvenuti S, Annunziato F, Bani D, Liotta F, Francini F, Perigli G, Serio M, Luconi M (2009) Characterization of human adult stem-cell populations isolated from visceral and subcutaneous adipose tissue. FASEB J 23:3494–3505

    Article  CAS  Google Scholar 

  • Bai X, Yan Y, Song Y-H, Seidensticker M, Rabinovich B, Metzele R, Bankson JA, Vykoukal D, Alt E (2010) Both cultured and freshly isolated adipose tissue derived stem cells enhance cardiac function after acute myocardial infarction. Eur Heart J 31:489–501

    Article  CAS  Google Scholar 

  • Boquest AC, Shahdadfar A, Fronsdal K, Sigurjonsson O, Tunheim SH, Collas P, Brichmann JE (2005) Isolation and transcription profiling of purified uncultured human stromal stem cells: alteration of gene expression after in vitro cell culture. Mol Biol Cell 16:1131

    Article  CAS  Google Scholar 

  • Brooke G, Tong H, Levesque J-P, Atkinson K (2008) Molecular trafficking mechanisms of multipotent mesenchymal stem cells derived from human bone marrow and placenta. Stem Cells Dev 17:929–940

    Article  CAS  Google Scholar 

  • Dann EJ, Daugherty CK, Larson RA (1997) Allogeneic bone marrow transplantation for relapsed and refractory Hodgkin’s disease and non-Hodgkin’s lymphoma. Bone Marrow Transplant 20:369–374

    Article  CAS  Google Scholar 

  • De Ugarte DA, Alphonso Z, Zuk PA, Elbarbury A (2003a) Differentiation extension of stem cell mobilization associated-molecules on multi lineage cells from adipose tissue and bone marrow. Immunol Lett 89:267–270

    Article  Google Scholar 

  • De Ugarte DA, Morizono K, Elbarbary A, Alphonso Z (2003b) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells tissue organs 174:101–109

    Article  Google Scholar 

  • Dimitroff CJ, Lee JY, Rafii S, Fuhlbrigge RC, Sackstein R (2001) CD44 is a major E-selectin ligand on human hematopoietic progenitor cells. J Cell Biol 153:1277–1286

    Article  CAS  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Cortenbach IS, Marini FC, Krausc DS, Deans RJ, Keating A, Prockop DJ, Horwitz EM (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  CAS  Google Scholar 

  • Garcia-Olmo D, Garcia-Arranz M, Herreros D (2008) Expanded adipose-derived stem cells for the treatment of complex perianal fistula including Crohn’s disease. Expert Opin Biol Ther 8:1417–1423

    Article  CAS  Google Scholar 

  • Gimble JM, Guilak F (2003) Differentiation potential of adipose derived adult stem cell (ADAS) cells. Curr Top Dev Biol 58:137–160

    Article  Google Scholar 

  • Gimble JM, Katz AJ, Bunnell BA (2007) Adipose-derived stem cells for regenerative medicine. Circ Res 100:1249–1260

    Article  CAS  Google Scholar 

  • Gimble JM, Guilak F, Bunnell BA (2010) Clinical and preclinical translation of cell-based therapies using adipose tissue-derived cells. Stem Cell Res Ther 1:19

    Article  Google Scholar 

  • Gronthos S, Franklin DM, Leddy HA, Robey PG (2001) Surface protein characterization of human adipose tissue-derived stormal cells. J Cell Physiol 189:54–63

    Article  CAS  Google Scholar 

  • Hallam S, Gribben JG (2010) Stem cell transplantation in chronic lymphocytic leukaemia—steering a safe course over shifting sands. Best Pract Res Clin Haematol 23:109–119

    Article  Google Scholar 

  • Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MAS, Werb Z, Raffi S (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109:625–637

    Article  CAS  Google Scholar 

  • Hess DA, Writhlin L, Carft TP, Phillip EH, Hohm SA, Lahey R, Eades WC, Creer MH, Nolta JA (2006) Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells. Blood 107:2162–2169

    Article  CAS  Google Scholar 

  • Horwitz EM, Prockop DJ, Fitzpatrick LA, Koo WW, Gordon PL, Neel M, Sussman M, Orchard P, Marx JC, Pveritz RE, Brenner MK (1999) Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat Med 5:309–313

    Article  CAS  Google Scholar 

  • Jurgens WJ, Oedayrajsingh-Varma MJ, Helder MN, Zandiehdoulabi B, Schouten TE, Kuik DJ, Ritt MJ, van Milligen FJ (2008) Effect of tissue-harvesting site on yield of stem cells derived from adipose tissue: implications for cell-based therapies. Cell Tissue Res 332:415–426

    Article  Google Scholar 

  • Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC (2005) Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells 23:412–423

    Article  CAS  Google Scholar 

  • Kern S, Eichler H, Stoeve J, Klüter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301

    Article  CAS  Google Scholar 

  • Kopp HG, Avecilla ST, Hooper AT, Rafii S (2005) The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology 20:349–356

    Article  CAS  Google Scholar 

  • Kotaro Y, Shigeura T, Matsumoto D, Sato T, Takaki Y, Aiba-Kojima E, Sato K, Inoue K, Nagase T, Koshima I, Gonda K (2006) Characterization of freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol s208:64–76

    Google Scholar 

  • Kuethe F, Richartz BM, Kasper C, Sayer HG, Hoeffken K, Werner GS, Figulla HR (2004a) Autologous intracoronary mononuclear bone marrow cell transplantation in chronic ischemic cardiomyopathy in humans. Int J Cardiol 100:485–491

    Article  Google Scholar 

  • Kuethe F, Richartz BM, Sayer HG, Kasper C, Werner GS, Höffken K, Figulla HR (2004b) Lack of regeneration of myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans with large anterior myocardial infarctions. Int J Cardiol 97:123–127

    Article  Google Scholar 

  • Kumar AA, Kumar SR, Narayanan R, Arul K, Baskaran M (2009) Autologous bone marrow derived mononuclear cell therapy for spinal cord injury: a phase I/II clinical safety and primary efficacy data. Exp Clin Transplant 7:241–248

    Google Scholar 

  • Lawson SE, Roberts IAG, Amrolia P, Dokal I, Szydloand R, Darbyshire PJ (2003) Bone marrow transplantation for b-thalassaemia major: the UK experience in two paediatric centres. Br J Haematol 120:289–295

    Article  Google Scholar 

  • Lioznov MV, Freiberger P, Kroger N, Zander AR, Fehse B (2005) Aldehyde dehydrogenase activity as a marker for the quality of hematopoietic stem cell transplants. Bone Marrow Transplant 35:909–914

    Article  CAS  Google Scholar 

  • Mesimaki K, Lindroos B, Tornwall J, Mauno J, Lindqvist C, Kontio R, Miettinen S, Suuronen R (2009) Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Oral Maxillofac Surg 38:201–209

    Article  CAS  Google Scholar 

  • Mins-Osorio P, Shapiro LH, Ortega E (2006) CD 13 in cell adhesion: aminopeptidase N (CD 13) mediates homotypic aggregation of monocytic cells. J Leukoc Bio 79:719–730

    Article  Google Scholar 

  • Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM (2006) Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 24:376–385

    Article  Google Scholar 

  • Pasqualini R, Renate K, Lahdenranta J, Sakamoto M, Stryhn A, Ashmun RA, Shapiro LH, Arap W, Ruoslahti E (2007) Aminopeptidase N is a receptor for tumor homing peptides and a target for inhibiting angiogenesis. Cancer Res 60:722–727

    Google Scholar 

  • Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  Google Scholar 

  • Pountos I, Corscadden D, Emery P, Giannoudis PV (2007) Mesenchymal stem cell tissue engineering: techniques for isolation, expansion and application. Injury S4:S23–S33

    Article  Google Scholar 

  • Rebelatto CK, Aguiar AM, Moretao MP, Senegaglia AC, Hansen P, Barchiki F, Oliveira J, Martins J, Kuligovski C, Mansur F, Christofis A, Amaral VF, Brofman PS, Goldenberg S, Nakao LS, Correa A (2007) Dissimilar differentiation of mesenchymal stem cells from bone marrow, umbilical cord blood, and adipose tissue. Exp Biol Med 233:901–913

    Google Scholar 

  • Ruggeri A, Ciceri F, Gluckman E, Labopin M, Rocha V (2010) Alternative donors hematopoietic stem cells transplantation for adults with acute myeloid leukemia: umbilical cord blood or haploidentical donors? Best Pract Res Clin Haematol 23:207–216

    Article  Google Scholar 

  • Sackstein R, Merzaban JS, Cain DW, Dagia NM, Spencer JA, Lin CP, Wohlgemuth R (2008) Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat Med 14:187

    Article  Google Scholar 

  • Singh AK, Patel J, Litbarg NO, Gudehithlu KP, Sethupathi P, Arruda JA, Dunea G (2008) Stromal cells cultured from omentum express pluripotent markers, produce high amount of VEGF, and engraft to injured sites. Cell Tissue Res 332:81–88

    Article  CAS  Google Scholar 

  • Stolzing A, Jones E, McGonagle D, Scutt A (2008) Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev 129:163–173

    Article  CAS  Google Scholar 

  • Tholpady SS, Katz AJ, Ogle RC (2003) Mesenchymal stem cells from rat visceral fat exhibit multipotential differentiation in vitro. Anat Rec Part A 272A:398–402

    Article  Google Scholar 

  • Toyoda M, Matsubara Y, Lin K, Sugimachi K, Furue M (2009) Characterization and comparison of adipose tissue-derived cells from human subcutaneous and omental adipose tissues. Cell Biochem Funct 27:440–447

    Article  CAS  Google Scholar 

  • Tsiftsoglou AS, Bonovolias ID, Tsiftsoglou SA (2009) Multilevel targeting of hematopoietic stem cell self-renewal, differentiation and apoptosis for leukemia therapy. Pharmacol Ther 122:264–280

    Article  CAS  Google Scholar 

  • Varma MJ, Breuls RG, Schouten TE, Jurgens WJ, Bontkes HJ, Schuurhuis GL, van Ham SM, van Milligen FJ (2007) Phenotypical and functional characterization of freshly isolated adipose tissue-derived stem cells. Stem Cells Dev 16:91–104

    Article  Google Scholar 

  • Vater C, Kasten P, Stiehler M (2011) Culture media for the differentiation of mesenchymal stromal cells. Acta Biomater 7:463–477

    Article  CAS  Google Scholar 

  • Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, Blake J, Schwager C, Eckstein V, Ansorge W, Ho AD (2005) Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol 33:1402–1416

    Article  CAS  Google Scholar 

  • Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6:93–106

    Article  CAS  Google Scholar 

  • Zhu H, Mitsuhashi N, Klein A, Barsky LW, Weinberg K, Barr ML, Demetriou A, Wu GD (2006) The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells 24:928–935

    Article  CAS  Google Scholar 

  • Zhu Y, Liu T, Song K, Fan X, Ma X, Cui Z (2008) Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct 26:664–675

    Article  CAS  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser jk, Banhaim P, Hedrick MH (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12): 4279–95

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Dhanasekaran.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhanasekaran, M., Indumathi, S., Kanmani, A. et al. Surface antigenic profiling of stem cells from human omentum fat in comparison with subcutaneous fat and bone marrow. Cytotechnology 64, 497–509 (2012). https://doi.org/10.1007/s10616-012-9427-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-012-9427-4

Keywords

Navigation