, Volume 64, Issue 1, pp 1–7 | Cite as

Isolation and differentiation potential of an equine amnion-derived stromal cell line

  • Stefania Violini
  • Chiara Gorni
  • Laura Francesca Pisani
  • Paola Ramelli
  • Mario Caniatti
  • Paola Mariani
Brief Report


Stem cells represent an important tool in veterinary therapeutic field such as tissue engineering. In the present study, equine amnion-derived mesenchymal stromal cells were investigated for applications in veterinary science as an alternative source to bone marrow mesenchymal stem cells and adipose stem cells. Amnion stromal cells isolation and characterization protocol is described; the in vitro cell growth rate was calculated by measuring viable cell number over 20 days. The expression of stem cell markers such as Oct-4, Nanog, Sox-2 and CD105 was assessed by retrotranscription quantitative PCR (RT-qPCR) and differentiation into adipocytes, osteocytes and chondrocytes precursors was analyzed by cytochemical staining. This study showed that amnion stromal cells expressing stem cell markers can differentiate into mesoderm lineage and may be an alternative source to mesenchymal stem cells derived from adipose tissue and bone marrow for the use in tissue repair.


Equine Amnion Gene expression Differentiation 


  1. Badie-Mahdavi H, Lu X, Behrens MM, Bartfai T (2005) Role of galanin receptor 1 and galanin receptor 2 activation in synaptic plasticity associated with 3′,5′-cyclic AMP response element-binding protein phosphorylation in the dentate gyrus: studies with a galanin receptor 2 agonist and galanin receptor 1 knockout mice. Neuroscience 133:591–604. doi:10.1016/j.neuroscience.2005.02.042 CrossRefGoogle Scholar
  2. Barrand S, Collas P (2010) Chromatin states of core pluripotency-associated genes in pluripotent, multipotent and differentiated cells. Biochem Biophys Res Commun 391:762–767. doi:10.1016/j.bbrc.2009.11.134 CrossRefGoogle Scholar
  3. Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19:180–192. doi:10.1634/stemcells.19-3-180 CrossRefGoogle Scholar
  4. Chambers I, Colby D, Robertson M, Nichols J, Lee S, Tweedie S, Smith A (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643–655. doi:10.1016/S0092-8674(03)00392-1 CrossRefGoogle Scholar
  5. Fortier LA, Nixon AJ, Williams J, Cable CS (1998) Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells. Am J Vet Res 59:1182–1187Google Scholar
  6. Greco SJ, Liu K, Rameshwar P (2007) Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells. Stem Cells 25:3143–3154. doi:10.1634/stemcells.2007-0351 CrossRefGoogle Scholar
  7. Gucciardo L, Lories R, Ochsenbein-Kölble N, Done’ E, Zwijsen A, Deprest J (2009) Fetal mesenchymal stem cells: isolation, properties and potential use in perinatology and regenerative medicine. BJOG 116:166–172. doi:10.1111/j.1471-0528.2008.02005.x CrossRefGoogle Scholar
  8. Guo J, Li ZC, Feng YH (2009) Expression and activation of the reprogramming transcription factors. Biochem Biophys Res Commun 390:1081–1086. doi:10.1016/j.bbrc.2009.11.017 CrossRefGoogle Scholar
  9. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:R19. doi:10.1186/gb-2007-8-2-r19 CrossRefGoogle Scholar
  10. Horisberger MA (2006) A method for prolonged survival of primary cell lines. In Vitro Cell Dev Biol Anim 42:143–148. doi:10.1290/0511081.1 CrossRefGoogle Scholar
  11. Ilancheran S, Moodley Y, Manuelpillai U (2009) Human fetal membranes: a source of stem cells for tissue regeneration and repair? Placenta 30:2–10. doi:10.1016/j.placenta.2008.09.009 CrossRefGoogle Scholar
  12. In’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, de Groot-Swings GM, Claas FH, Fibbe WE, Kanhai HH (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22:1338–1345. doi:10.1634/stemcells.2004-0058 CrossRefGoogle Scholar
  13. Insausti CL, Blanquer M, Bleda P, Iniesta P, Majado MJ, Castellanos G, Moraleda JM (2010) The amniotic membrane as a source of stem cells. Histol Histopathol 25:91–98Google Scholar
  14. Kim J, Kang HM, Kim H, Kim MR, Kwon HC, Gye MC, Kang SG, Yang HS, You J (2007) Ex vivo characteristics of human amniotic membrane-derived stem cells. Cloning Stem Cells 9:581–594. doi:10.1089/clo.2007.0027 CrossRefGoogle Scholar
  15. Koch TG, Heerkens T, Thomsen PD, Betts DH (2007) Isolation of mesenchymal stem cells from equine umbilical cord blood. BMC Biotechnol 30:7–26. doi:10.1186/1472-6750-7-26 Google Scholar
  16. Konnai S, Usui T, Ohashi K, Onuma M (2003) The rapid quantitative analysis of bovine cytokine genes by real-time RT-PCR. Vet Microbiol 94:283–294. doi:10.1016/S0378-1135(03)00119-6 CrossRefGoogle Scholar
  17. Mambelli LI, Santos EJ, Frazão PJ, Chaparro MB, Kerkis A, Zoppa AL, Kerkis I (2009) Characterization of equine adipose tissue-derived progenitor cells before and after cryopreservation. Tissue Eng Part C Methods 15:87–94. doi:10.1089/ten.tec.2008.0186 CrossRefGoogle Scholar
  18. Marcus AJ, Coyne TM, Rauch J, Woodbury D, Black IB (2008) Isolation, characterization, and differentiation of stem cells derived from the rat amniotic membrane. Differentiation 76:130–144. doi:10.1111/j.1582-4934.2008.00180.x CrossRefGoogle Scholar
  19. Moon JH, Lee JR, Jee BC, Suh CS, Kim SH, Lim HJ, Kim HK (2008) Successful vitrification of human amnion-derived mesenchymal stem cells. Hum Reprod 238:1760–1770. doi:10.1093/humrep/den202 CrossRefGoogle Scholar
  20. Moore RM, Silver RJ, Moore JJ (2003) Physiological apoptotic agents have different effects upon human amnion epithelial and mesenchymal cells. Placenta 24:173–180. doi:10.1053/plac.2002.0886 CrossRefGoogle Scholar
  21. Parolini O, Alviano F, Bagnara GP, Bilic G, Bühring H-J, Evangelista M, Hennerbichler S, Liu B, Magatti R, Mao N, Miki T, Marongiu F, Nakajima H, Nikaido TC, Portmann-Lanz CB, Sankar V, Soncini M, Stadler G, Surbek D, Takahashi TA, Reidler H, Skuragawa N, Wolbank S, Zeisberger S, Zisch A, Strom SC (2008) Concise review: isolation and characterization of cells from human term placenta: outcome of the first international workshop on placenta derived stem cells. Stem Cells 26:300–311. doi:10.1634/stemcells.2007-0594 CrossRefGoogle Scholar
  22. Reed SA, Johnson SE (2008) Equine umbilical cord blood contains a population of stem cells that express Oct4 and differentiate into mesodermal and endodermal cell types. J Cell Physiol 215:329–336. doi:10.1002/jcp.21312 CrossRefGoogle Scholar
  23. Sensebé L, Bourin P (2009) Mesenchymal stem cells for therapeutic purposes. Transplantation 87:S49–S53. doi:10.1097/TP.0b013e3181a28635 CrossRefGoogle Scholar
  24. Stadler G, Hennerbichler S, Lindenmair A, Peterbauer A, Hofer K, van Griensven M, Gabriel C, Redl H, Wolbank S (2008) Phenotypic shift of human amniotic epithelial cells in culture is associated with reduced osteogenic differentiation in vitro. Cytotherapy 107:743–752. doi:10.1080/14653240802345804 CrossRefGoogle Scholar
  25. Toda A, Okabe M, Yoshida T, Nikaido T (2007) The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J Pharmacol Sci 105:215–228. doi:10.1254/jphs.CR0070034 CrossRefGoogle Scholar
  26. Ulloa-Montoya F, Kidder BL, Pauwelyn KA, Chase LG, Luttun A, Crabbe A, Geraerts M, Sharov AA, Ko MSH, Piao Y, Hu W-S, Verfaillie CM (2007) Comparative transcriptome analysis of embryonic and adult stem cells with extended and limited differentiation capacity. Genome Biol 8:R163. doi:10.1186/gb-2007-8-8-r163 CrossRefGoogle Scholar
  27. Vidal MA, Kilroy GE, Lopez MJ, Johnson JR, Moore RM, Gimble JM (2007) Characterization of equine adipose tissue-derived stromal cells: adipogenic and osteogenic capacity and comparison with bone marrow-derived mesenchymal stromal cells. Vet Surg 36:613–622. doi:10.1111/j.1532-950X.2007.00313.x CrossRefGoogle Scholar
  28. Violini S, Ramelli P, Pisani LF, Gorni C, Mariani P (2009) Horse bone marrow mesenchymal stem cells express embryo stem cell markers and show the ability for tenogenic differentiation by in vitro exposure to BMP-12. BMC Cell Biol 10:29. doi:10.1186/1471-2121-10-29 CrossRefGoogle Scholar
  29. Yalvac ME, Ramazanoglu M, Rizvanov AA, Sahin F, Bayrak OF, Salli U, Palotas A, Kose GT (2010) Isolation and characterization of stem cells derived from human third molar tooth germs of young adults: implications in neo-vascularization, osteo-, adipo- and neurogenesis. Pharmacogenomics J 10(2):105–113. doi:10.1038/tpj.2009.40 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Stefania Violini
    • 1
  • Chiara Gorni
    • 1
  • Laura Francesca Pisani
    • 1
    • 2
  • Paola Ramelli
    • 1
  • Mario Caniatti
    • 3
  • Paola Mariani
    • 1
  1. 1.Parco Tecnologico Padano, CERSALodiItaly
  2. 2.Department of Veterinary Pathology, Hygiene and Public Health, Faculty of Veterinary MedicineUniversità degli Studi di MilanoMilanItaly
  3. 3.DIPAV, Veterinary Anatomo-Pathology and Avian Pathology UnitUniversità degli Studi di MilanoMilanItaly

Personalised recommendations