Skip to main content

Advertisement

Log in

Effects of clonal variation on growth, metabolism, and productivity in response to trophic factor stimulation: a study of Chinese hamster ovary cells producing a recombinant monoclonal antibody

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

The growth, metabolism, and productivity of five Chinese hamster ovary (CHO) clones were explored in response to stimulation with insulin (5 mg/L) and LONG®R3IGF-I (20 μg/L or 100 μg/L). All five clones were derived from the same parental CHO cell line (DG44) and produced the same recombinant monoclonal antibody, with varying specific productivities. There was no uniform response among the clones to stimulation with the different trophic factors. One of the high productivity clones (clone D) exhibited significantly better growth in response to LONG®R3IGF-I; whereas the other clones showed equivalent or slightly better growth in the presence of insulin. Three out of the five clones had higher specific productivities in the presence of insulin (although not statistically significant); one was invariant, and the final clone exhibited slightly higher specific productivity in the presence of LONG®R3IGF-I. Total product titers exhibited moderate variation between culture conditions, again with neither trophic factor being clearly superior. Overall product titers were affected by variations in both integrated viable cell density and specific productivity. Nutrient uptake and metabolite generation patterns varied strongly between clones and much less with culture conditions. These results point to the need for careful clonal analysis when selecting clones, particularly for platform processes where media and culture conditions are predetermined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Barnes D, Sato G (1980) Methods for growth of cultured cells in serum-free medium. Anal Biochem 102(2):255–270

    Article  CAS  Google Scholar 

  • Baughman AC, Sharfstein ST, Martin LL (2010a) A flexible state-space approach for the modeling of metabolic networks I: development of mathematical methods. Metab Eng 13:125–137. doi:10.1016/j.ymben.2010.12.002

    Article  Google Scholar 

  • Baughman AC, Sharfstein ST, Martin LL (2010b) A flexible state-space approach for the modeling of metabolic networks II: advanced interrogation of hybridoma metabolism. Metab Eng 13:138–149. doi:10.1016/j.ymben.2010.12.003

    Article  Google Scholar 

  • Bebbington CR, Renner G, Thomson S, King D, Abrams D, Yarranton GT (1992) High-level expression of a recombinant antibody from myeloma cells using a glutamine synthetase gene as an amplifiable selectable marker. Biotechnology (NY) 10:169–175

    Article  CAS  Google Scholar 

  • Benyoucef S, Surinya KH, Hadaschik D, Siddle K (2007) Characterization of insulin/IGF hybrid receptors: contributions of the insulin receptor L2 and Fn1 domains and the alternatively spliced exon 11 sequence to ligand binding and receptor activation. Biochem J 403:603–613. doi:10.1042/BJ20061709

    Article  CAS  Google Scholar 

  • Bonarius HPJ, Hatzimanikatis V, Meesters KPH, deGooijer CD, Schmid G, Tramper J (1996) Metabolic flux analysis of hybridoma cells in different culture media using mass balances. Biotechnol Bioeng 50:299–318

    Article  CAS  Google Scholar 

  • Chun C, Heineken K, Szeto D, Ryll T, Chamow S, Chung JD (2003) Application of factorial design to accelerate identification of CHO growth factor requirements. Biotechnol Prog 19:52–57. doi:10.1021/bp025575

    Article  CAS  Google Scholar 

  • DePalma A (2008) Platform technologies ease scale-up pain. Genet Eng Biotechnol News 28:44+

    Google Scholar 

  • Dorai H, Li K, Huang CC, Bittner A, Galindo J, Carmen A (2007) Genome-wide analysis of mouse myeloma cell lines expressing therapeutic antibodies. Biotechnol Prog 23:911–920

    CAS  Google Scholar 

  • Durocher Y, Butler M (2009) Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol 20:700–707. doi:10.1016/j.copbio.2009.10.008

    Article  CAS  Google Scholar 

  • Eppink MHM, Schreurs R, Gusen A, Verhoeven K (2009) Platform technology for developing purification processes. Biopharm Int 20:44

    Google Scholar 

  • Francis GL, Ross M, Ballard FJ, Milner SJ, Senn C, McNeil KA, Wallace JC, King R, Wells JR (1992) Novel recombinant fusion protein analogues of insulin-like growth factor (IGF)-I indicate the relative importance of IGF-binding protein and receptor binding for enhanced biological potency. J Mol Endocrinol 8:213–223

    Article  CAS  Google Scholar 

  • Ganne V, Mignot G (1991) Application of statistical design of experiments to the optimization of factor VIII expression by CHO cells. Cytotechnology 6:233–240

    Article  CAS  Google Scholar 

  • Griffin TJ, Seth G, Xie HW, Bandhakavi S, Hu WS (2007) Advancing mammalian cell culture engineering using genome-scale technologies. Trends Biotechnol 25:401–408. doi:10.1016/j.tibtech.2007.07.004

    Article  CAS  Google Scholar 

  • Hayashi I, Larner J, Sato G (1978) Hormonal growth control of cells in culture. In Vitro 14:23–30

    Article  CAS  Google Scholar 

  • Holly J (2004) Physiology of the IGF system. In: Bock G, Goode J (eds) Biology of IGF-1: its interaction with insulin in health and malignant states, Novartis Foundation Symposium 262, pp 19–26; discussion pp 26–35, pp 265–268, Wiley, Chichester, UK. doi:10.1002/0470869976.ch3

  • Hunt SMN, Pak SCO, Bridges MW, Gray PP, Sleigh MJ (1997) Chinese hamster ovary cells produce sufficient recombinant insulin-like growth factor I to support growth in serum-free medium—serum-free growth of IGF-I producing CHO cells. Cytotechnology 24:55–64

    Article  CAS  Google Scholar 

  • Jiang Z, Sharfstein ST (2009) Characterization of gene localization and accessibility in DHFR-amplified CHO cells. Biotechnol Prog 25:296–300

    Article  CAS  Google Scholar 

  • Jiang Z, Huang Y, Sharfstein ST (2006) Regulation of recombinant monoclonal antibody production in Chinese hamster ovary cells: a comparative study of gene copy number, mRNA level, and protein expression. Biotechnol Prog 22:313–318

    Article  CAS  Google Scholar 

  • Kaufman RJ (1990) Selection and coamplification of heterologous genes in mammalian cells. Methods Enzymol 185:537–566

    Article  CAS  Google Scholar 

  • Kaufman RJ, Sharp PA, Latt SA (1983) Evolution of chromosomal regions containing transfected and amplified dihydrofolate reductase sequences. Mol Cell Biol 3:699–711

    CAS  Google Scholar 

  • Kim SH, Lee GM (2009) Development of serum-free medium supplemented with hydrolysates for the production of therapeutic antibodies in CHO cell cultures using design of experiments. Appl Microbiol Biotechnol 83:639–648. doi:10.1007/s00253-009-1903-1

    Article  CAS  Google Scholar 

  • Kontoravdi C, Asprey SP, Pistikopoulos EN, Mantalaris A (2005) Application of global sensitivity analysis to determine goals for design of experiments: an example study on antibody-producing cell cultures. Biotechnol Prog 21:1128–1135. doi:10.1021/bp050028k

    Article  CAS  Google Scholar 

  • La Merie Business Intelligence (2010) Top 20 Biologics 2009. R&D Pipeline News, vol March 10, 2009

  • Laviola L, Natalicchio A, Giorgino F (2007) The IGF-I signaling pathway. Curr Pharm Des 13:663–669

    Article  CAS  Google Scholar 

  • Leno M, Merten OW, Hache J (1992) Kinetic-analysis of hybridoma growth and monoclonal-antibody production in semicontinuous culture. Biotechnol Bioeng 39:596–606

    Article  CAS  Google Scholar 

  • Leonard M, Onadipe K (2010) Practical challenges in biotherapeutic development: when and how do rapidly-developed, platform phase 1 processes “Transform Themselves” into optimized, robust commercial ones? Paper presented at the cell culture engineering XII, Banff, Alberta, Canada, April 25–30

  • Li H, d’Anjou M (2009) Pharmacological significance of glycosylation in therapeutic proteins. Curr Opin Biotechnol 20:678–684. doi:10.1016/j.copbio.2009.10.009

    Article  CAS  Google Scholar 

  • Li DJ, Hettle S, McLean J, MacDonald C (2000) Survival of 3T3 cells expressing or co-expressing bFGF and/or IGF-I and/or IGF-II in low serum and serum free media. Cytotechnology 32:209–218

    Article  CAS  Google Scholar 

  • Liu C, Chu I, Hwang S (2001) Factorial designs combined with the steepest ascent method to optimize serum-free media for CHO cells. Enzyme Microb Technol 28:314–321

    Article  CAS  Google Scholar 

  • Mancuso A, Sharfstein ST, Tucker SN, Clark DS, Blanch HW (1994) Examination of primary metabolic pathways in a murine hybridoma with carbon-13 nuclear magnetic resonance spectroscopy. Biotech Bioeng 44:563–585. doi:10.1002/bit.260440504

    Article  CAS  Google Scholar 

  • Mancuso A, Sharfstein ST, Fernandez EJ, Clark DS, Blanch HW (1998) Effect of extracellular glutamine concentration on primary and secondary metabolism of a murine hybridoma: an in vivo 13C nuclear magnetic resonance study. Biotech Bioeng 57:172–186

    Article  CAS  Google Scholar 

  • Morris AE, Schmid J (2000) Effects of insulin and LongR(3) on serum-free Chinese hamster ovary cell cultures expressing two recombinant proteins. Biotechnol Prog 16:693–697. doi:10.1021/bp0000914

    Article  CAS  Google Scholar 

  • Ozturk SS, Palsson BO (1991) Growth, metabolic, and antibody production kinetics of hybridoma cell culture: 2. Effects of serum concentration, dissolved oxygen concentration, and medium pH in a batch reactor. Biotechnol Prog 7:481–494

    Google Scholar 

  • Pandini G, Frasca F, Mineo R, Sciacca L, Vigneri R, Belfiore A (2002) Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. J Biol Chem 277:39684–39695. doi:10.1074/jbc.M202766200

    Article  CAS  Google Scholar 

  • Pause A, Belsham GJ, Gingras A-C, Donze O, Lin T-A, Lawrence JC, Sonenberg N (1994) Insulin-dependent stimulation of protein synthesis by phosphorylation of a regulator of 5’-cap function. Nature 371:762–767

    Article  CAS  Google Scholar 

  • Rasmussen B, Davis R, Thomas J, Reddy P (1998) Isolation, characterization and recombinant protein expression in Veggie-CHO: a serum-free CHO host cell line. Cytotechnology 28:31–42

    Article  CAS  Google Scholar 

  • Reichert JM, Wenger JB (2008) Development trends for new cancer therapeutics and vaccines. Drug Discov Today 13:30–37. doi:10.1016/j.drudis.2007.09.003

    Article  CAS  Google Scholar 

  • Sandadi S, Ensari S, Kearns B (2006) Application of fractional factorial designs to screen active factors for antibody production by Chinese hamster ovary cells. Biotechnol Prog 22:595–600. doi:10.1021/bp050300q

    Article  CAS  Google Scholar 

  • Savinell JM, Palsson BO (1992) Network analysis of intermediary metabolism using linear optimization. II. Interpretation of hybridoma cell metabolism. J Theor Biol 154:455–473

    Google Scholar 

  • Schneider M, Marison IW, von Stockar U (1996) The importance of ammonia in mammalian cell culture. J Biotechnol 46:161–185

    Article  CAS  Google Scholar 

  • Seeworster T (2010) Where are you in the platform funnel? Paper presented at the cell culture engineering XII, Banff, Alberta, Canada, April 25–30

  • Selvarasu S, Wong VV, Karimi IA, Lee DY (2009) Elucidation of metabolism in hybridoma cells grown in fed-batch culture by genome-scale modeling. Biotech Bioeng 102:1494–1504. doi:10.1002/bit.22186

    Article  CAS  Google Scholar 

  • Sharfstein ST, Tucker SN, Mancuso A, Blanch HW, Clark DS (1994) Quantitative in vivo nuclear magnetic resonance studies of hybridoma metabolism. Biotech Bioeng 43:1059–1074. doi:10.1002/bit.260431109

    Article  CAS  Google Scholar 

  • Sheikh K, Förster J, Nielsen LK (2005) Modeling hybridoma cell metabolism using a generic genome-scale metabolic model of Mus musculus. Biotechnol Prog 21:112–121

    Article  CAS  Google Scholar 

  • Shen D, Sharfstein ST (2006) Genome-wide analysis of the transcriptional response of murine hybridomas to osmotic shock. Biotechnol Bioeng 93:132–145

    Article  CAS  Google Scholar 

  • Shen D, Kiehl TR, Khattak SF, Li ZJ, He A, Kayne PS, Patel V, Neuhaus IM, Sharfstein ST (2010) Transcriptomic responses to sodium chloride-induced osmotic stress: a study of industrial fed-batch CHO cell cultures. Biotechnol Prog 26:1104–1115. doi:10.1002/btpr.398

    CAS  Google Scholar 

  • Shukla AA, Hubbard B, Tressel T, Guhan S, Low D (2007) Downstream processing of monoclonal antibodies—application of platform approaches. J Chromatogr B Anal Technol Biomed Life Sci 848:28–39. doi:10.1016/j.jchromb.2006.09.026

    Article  CAS  Google Scholar 

  • Slaaby R, Schaffer L, Lautrup-Larsen I, Andersen AS, Shaw AC, Mathiasen IS, Brandt J (2006) Hybrid receptors formed by insulin receptor (IR) and insulin-like growth factor I receptor (IGF-IR) have low insulin and high IGF-1 affinity irrespective of the IR splice variant. J Biol Chem 281:25869–25874. doi:10.1074/jbc.M605189200

    Article  CAS  Google Scholar 

  • Strohl WR, Knight DM (2009) Discovery and development of biopharmaceuticals: current issues. Curr Opin Biotechnol 20:668–672. doi:10.1016/j.copbio.2009.10.012

    Article  CAS  Google Scholar 

  • Sunstrom NA, Baig M, Cheng L, Sugyiono DP, Gray P (1998) Recombinant insulin-like growth factor-I (IGF-I) production in super-CHO results in the expression of IGF-I receptor and IGF binding protein 3. Cytotechnology 28:91–99

    Article  CAS  Google Scholar 

  • Sunstrom NA, Gay RD, Wong DC, Kitchen NA, DeBoer L, Gray PP (2000) Insulin-like growth factor-I and transferrin mediate growth and survival of Chinese hamster ovary cells. Biotechnol Prog 16:698–702

    Article  CAS  Google Scholar 

  • Swiderek H, Al-Rubeai M (2007) Functional genome-wide analysis of antibody producing NS0 cell line cultivated at different temperatures. Biotechnol Bioeng 98:616–630

    Article  CAS  Google Scholar 

  • Urlaub G, Chasin LA (1980) Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity. PNAS 77:4216–4220

    Article  CAS  Google Scholar 

  • Voorhamme D, Yandell CA (2006) LONG R3IGF-I as a more potent alternative to insulin in serum-free culture of HEK293 cells. Mol Biotechnol 34:201–204

    Article  CAS  Google Scholar 

  • Walsh G (2006) Biopharmaceutical benchmarks 2006. Nat Biotechnol 24:769–776

    Article  CAS  Google Scholar 

  • Walsh G (2007) Approval trends in 2006. Biopharm Int 20:56+

    Google Scholar 

  • Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398

    Article  CAS  Google Scholar 

  • Xie L, Wang DI (1994) Applications of improved stoichiometric model in medium design and fed-batch cultivation of animal cells in bioreactor. Cytotechnology 15:17–29

    Article  CAS  Google Scholar 

  • Yandell C, Lawson J, Butler I, Wade B, Sheehan A, Grosvenor S, Goddard C, Simula T (2004) An analogue of IGF-I. Bioprocess Int, March:2–7

  • Zhang YP, Katakura Y, Seto P, Shirahata S (1997) Evidence that phosphatidylcholine-specific phospholipase C is a key molecule mediating insulin-induced enhancement of gene expression from human cytomegalovirus promoter in CHO cells. Cytotechnology 23:193–196

    Article  CAS  Google Scholar 

  • Zupke C, Stephanopoulos G (1995) Intracellular flux analysis in hybridomas using mass balances and in vitro (13)C NMR. Biotech Bioeng 45:292–303. doi:10.1002/bit.260450403

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Drs. Sally Grosvenor, Larissa Chirkova, Anthony Simula, and Geoffrey Francis for advice on experimental design and comments on the manuscript and Dr. Thomas Kiehl, Christian Schenkelberg, and Yong Jun An for technical assistance with the cell counting. This work was supported by Novozymes Biopharma AU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan T. Sharfstein.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 71.6 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dahodwala, H., Nowey, M., Mitina, T. et al. Effects of clonal variation on growth, metabolism, and productivity in response to trophic factor stimulation: a study of Chinese hamster ovary cells producing a recombinant monoclonal antibody. Cytotechnology 64, 27–41 (2012). https://doi.org/10.1007/s10616-011-9388-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-011-9388-z

Keywords

Navigation