, Volume 63, Issue 1, pp 57–66 | Cite as

Transforming growth factor-beta 1 in adipose derived stem cells conditioned medium is a dominant paracrine mediator determines hyaluronic acid and collagen expression profile

  • Hana Jung
  • Hak Hee Kim
  • Dong Hee Lee
  • Yu-Shik Hwang
  • Hyeong-Cheol Yang
  • Jong-Chul ParkEmail author
Original Research


Conditioned medium from adipose derived stem cells (ADSC-CM) stimulates both collagen synthesis and migration of fibroblasts, and accelerates wound healing in vivo. Recently, the production and secretion of growth factors has been identified as an essential function of adipose-derived stem cells (ADSCs). However, the main soluble factor of ADSC-CM which mediates paracrine effects and its underlying mechanism has not been elucidated yet. In this study, we considered transforming growth factor-beta1 (TGF-β1) as a strong candidate for paracrine effect of ADSC-CM and investigated collagen synthesis and hyaluronic acid synthase (HAS) expression. After ADSC-CM addition, collagen type I, type III, HAS and hyaluronic acid (HA) expressions on human dermal fibroblasts (HDFs) were evaluated. Furthermore, to clarify effects of TGF-β1 as a paracrine mediator, TGF-β1 antibody and external supplementary TGF-β1 were treated to HDFs. Collagens type I, type III, HAS-1 and HAS-2 mRNA expressions of HDFs were greatly increased by ADSC-CM treatment, however there was no change in TGF-β1 antibody treated HDFs compared with non-treated control. These results strongly demonstrate that TGF-β1 plays an important role as a paracrine mediator of ECM synthesis. The fact that TGF-β1 contained in ADSC-CM not only accelerates collagen deposition but also increase hyaluronic acid synthesis of HDFs through HAS-1 and HAS-2 expression was also elucidated in this study. Therefore, ADSC-CM shows promise for the treatment of cutaneous wounds and accelerates granulation formation during healing process.


Adipose derived stem cells (ADSCs) Paracrine effect TGF-β1 Hyaluronic acid synthase (HAS) Human dermal fibroblasts (HDFs) 


  1. Akmal M, Singh A, Anand A, Kesani A, Aslam N, Goodship A (2005) The effects of hyaluronic acid on articular chondrocytes. J Bone Joint Surg Br 87:1143–1149. doi: 10.1302/0301-620X.87B8.15083 CrossRefGoogle Scholar
  2. Allemann F, Mizuno S, Eid K, Yates KE, Zaleske D, Glowacki J (2001) Effects of hyaluronan on engineered articular cartilage extracellular matrix gene expression in 3-dimensional collagen scaffolds. J Biomed Mater Res 55:13–19. doi: 10.1002/1097-4636(200104)55:1<13:AID-JBM20>3.0.CO;2-G CrossRefGoogle Scholar
  3. Campo GM, Avenoso A, Campo S, Angela D, Ferlazzo AM, Calatroni A (2006) TNF-alpha, IFN-gamma, and IL-1beta modulate hyaluronan synthase expression in human skin fibroblasts: synergistic effect by concomital treatment with FeSO4 plus ascorbate. Mol Cell Biochem 292:169–178. doi: 10.1007/s11010-006-9230-7 CrossRefGoogle Scholar
  4. David-Raoudi M, Tranchepain F, Deschrevel B, Vincent JC, Bogdanowicz P, Boumediene K, Pujol JP (2008) Differential effects of hyaluronan and its fragments on fibroblasts: relation to wound healing. Wound Repair Regen 16:274–287. doi: 10.1111/j.1524-475X.2007.00342 CrossRefGoogle Scholar
  5. Guo N, Li X, Mann MM, Funderburgh LM, Du Y, Funderburgh LJ (2010) Hyaluronan synthesis mediates the fibrotic response of keratocytes to transforming growth factor β. JBC 285:32012–32019. doi: 10.1074/jbc.M110.127183 CrossRefGoogle Scholar
  6. Itano N, Sawai T, Yoshida M, Lenas P, Yamada Y, Imagawa M, Shinomura T, Hamaguchi M, Yoshida Y, Ohnuki Y, Miyauchi S, Spicer AP, McDonald JA, Kimata K (1999) Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J Biol Chem 274:25085–25092. doi: 10.1074/jbc.274.35.25085 CrossRefGoogle Scholar
  7. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301. doi: 10.1634/stemcells.2005-0342 CrossRefGoogle Scholar
  8. Kim WS, Park BS, Sung JH, Yang JM, Park SB, Kwak SJ, Park JS (2007) Wound healing effect of adipose-derived stem cells: a critical role of secretory factors on human dermal fibroblasts. J Dermatol Sci 48:15–24. doi: 10.1016/j.jdermsci.2008.08.007 CrossRefGoogle Scholar
  9. Kim H, Kawazoe T, Han DW, Matsumara K, Suzuki S, Tsutsumi S, Hyon SH (2008) Enhanced wound healing by an epigallocatechin gallate-incorporated collagen sponge in diabetic mice. Wound Repair Regen 16:714–720. doi: 10.1111/j.1524-475X.2008.00422.x CrossRefGoogle Scholar
  10. Kim WS, Park BS, Park SH, Kim HK, Sung JH (2009) Antiwrinkle effect of adipose-derived stem cell: activation of dermal fibroblast by secretory factors. J Dermatol Sci 53:96–102. doi: 10.1016/j.jdermsci.2008.08.007 CrossRefGoogle Scholar
  11. Kinnaird T, Stabile E, Burnett MS, Lee CW, Barr S, Fuchs S (2004) Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res 94:678–685. doi: 10.1161/01.RES.0000118601.37875.AC CrossRefGoogle Scholar
  12. Kratchmarova I, Kalume DE, Blagoev B, Scherer PE, Podtelejnikov AV, Molina H (2002) A proteomic approach for identification of secreted proteins during the differentiation of 3T3-L1 preadipocytes to adipocytes. Mol Cell Proteomics 1:213–222. doi: 10.1074/mcp.M200006-MCP200 CrossRefGoogle Scholar
  13. Larson BJ, Longaker MT, Lorenz HP (2010) Scarless fetal wound healing: a basic science review. Plastic Reconstr Surg 126:1172–1180. doi: 10.1097/PRS.0b013e3181eae781 CrossRefGoogle Scholar
  14. Maeda K, Okubo K, Shimomura I, Funahashi T, Matsuzawa Y, Matsubara K (1996) cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochem Biophys Res Commun 221:286–289. doi: 10.1006/bbrc.1996.0587 CrossRefGoogle Scholar
  15. Maeda K, Okubo K, Shimomura I, Mizuno K, Matsuzawa Y, Matsubara K (1997) Analysis of an expression profile of genes in the human adipose tissue. Gene 190:227–235. doi: 10.1016/S0378-1119(96)00730-5 CrossRefGoogle Scholar
  16. Meran S, Thoms D, Stephens P, Martin J, Bowen T, Phillips A, Steadman R (2007) Involvement of hyaluronan in regulation of fibroblast phenotype. J Biol Chem 282:25687–25697. doi: 10.1074/jbc.M700773200 CrossRefGoogle Scholar
  17. Meran S, Thomas DW, Stephens P, Enoch S, Martin J, Steadman R, Phillips AO (2008) Hyaluronan facilitates transforming growth factor-beta1-mediated fibroblast proliferation. J Biol Chem 283:6530–6545. doi: 10.1074/jbc.M512840200 CrossRefGoogle Scholar
  18. Park BS, Jang KA, Sung JH, Park JS, Kwon YH, Kim KJ, Kim WS (2008) Adipose-derived stem cells and their secretory factors as a promising therapy for skin aging. Dermatol Surg 34:1323–1326. doi: 10.1111/j.1524-4725.2008.34283 CrossRefGoogle Scholar
  19. Park BS, Kim WS, Choi JS, Kim HK, Won JH, Ohkubo F, Fukuoka H (2010) Hair growth stimulated by conditioned medium of adipose-derived stem cells is enhanced by hypoxia: evidence of increased growth factor secretion. Biomed Res 31:27–34. doi: 10.2220/biomedres.31.27 CrossRefGoogle Scholar
  20. Planat-Benard V, Silvestre JS, Cousin B, André M, Nibbelink M, Tamarat R,Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Pénicaud L,Casteilla L (2004) Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation 109:656-663. doi: 10.1161/01.CIR.0000114522.38265.61 CrossRefGoogle Scholar
  21. Puolakkainen PA, Twardzik DR, Ranchalis JE, Pankey SC, Reed MJ, Gombotz WR (1995) The enhancement in wound healing by transforming growth factor-beta 1 (TGF-beta 1) depends on the topical delivery system. J Surg Res 58:321–329. doi: 10.1006/jsre.1995.1050 CrossRefGoogle Scholar
  22. Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109:1292–1298. doi: 10.1161/01.CIR.0000121425.42966.F1 CrossRefGoogle Scholar
  23. Tammi R, Pasonen-Seppänen S, Kolehmainen E, Tammi M (2005) Hyaluronan synthase induction and hyaluronan accumulation in mouse epidermis following skin injury. J Invest Dermatol 124:898–905. doi: 10.1111/j.0022-202X.2005.23697.x CrossRefGoogle Scholar
  24. Turino GM, Canor JO (2003) Hyaluronan in respirator injury and repair. Am J Respir Crit Care Med 167:1169–1175. doi: 10.1164/rccm.200205-449PP CrossRefGoogle Scholar
  25. Webber J, Jenkins RH, Meran S, Phillips A, Steadman R (2009) Modulation of TGFbeta1-dependent myofibroblast differentiation by hyaluronan. Am J Pathol 175:148–160. doi: 10.2353/ajpath.2009.080837 CrossRefGoogle Scholar
  26. Williams JM, Rayan V, Sumner DR, Thonar EJ (2003) The use of intra-articular Na-hyaluronate as a potential chondroprotective device in experimentally-induced acute articular cartilage injury and repair in rabbits. J Orthop Res 21:305–311. doi: 10.1016/S0736-0266(02)00156-0 CrossRefGoogle Scholar
  27. Zhu Y, Liu T, Song K, Fan X, Ma X, Cui Z (2008) Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct 26:664–675. doi: 10.1002/cbf.1488 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Hana Jung
    • 1
  • Hak Hee Kim
    • 2
  • Dong Hee Lee
    • 1
  • Yu-Shik Hwang
    • 3
  • Hyeong-Cheol Yang
    • 4
  • Jong-Chul Park
    • 2
    • 5
    Email author
  1. 1.Biomaterials Research CenterYeongtong-gu, Suwon-siKorea
  2. 2.Department of Medical EngineeringYonsei University College of MedicineSeoulKorea
  3. 3.Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology School of DentistryKyung Hee UniversitySeoulKorea
  4. 4.Department of Dental Biomaterials Science and Dental Research Institute, College of DentistrySeoul National UniversitySeoulKorea
  5. 5.Brain Korea 21 Project for Medical ScienceYonsei University College of MedicineSeoulSouth Korea

Personalised recommendations