, Volume 59, Issue 2, pp 81–91 | Cite as

The effects of microcarrier culture on recombinant CHO cells under biphasic hypothermic culture conditions

  • Jong Hyun Nam
  • Myriam Ermonval
  • Susan T. Sharfstein


A Chinese hamster ovary (CHO) cell line, producing recombinant secreted human placental alkaline phosphatase (SEAP) was investigated under three different culture conditions (suspension cells, cells attached to Cytodex 3 and Cytopore 1 microcarriers) in a biphasic culture mode using a temperature shift to mild hypothermic conditions (33 °C) in a fed-batch bioreactor. The cell viability in both the suspension and the Cytodex 3 cultures was maintained for significantly longer periods under hypothermic conditions than in the single-temperature cultures, leading to higher integrated viable cell densities. For all culture conditions, the specific productivity of SEAP increased after the temperature reduction; the specific productivities of the microcarrier cultures increased approximately threefold while the specific productivity of the suspension culture increased nearly eightfold. The glucose and glutamine consumption rates and lactate and ammonia production rates were significantly lowered after the temperature reduction, as were the yields of lactate from glucose. However, the yield of ammonia from glutamine increased in response to the temperature shift.


rCHO cells Bioreactor Hypothermia Microcarrier cultures SEAP 


  1. Berry JM, Barnabé N, Coombs KM, Butler M (1999) Production of reovirus type-1 and type-3 from Vero cells grown on solid and macroporous microcarriers. Biotechnol Bioeng 62:12–19. doi:10.1002/(SICI)1097-0290(19990105)62:1<12::AID-BIT2>3.0.CO;2-G CrossRefGoogle Scholar
  2. Bollati-Fogolin M, Forno G, Nimtz M, Conradt HS, Etcheverrigaray M, Kratje R (2005) Temperature reduction in cultures of hGM-CSF-expressing CHO cells: effect on productivity and product quality. Biotechnol Prog 21:17–21. doi:10.1021/bp049825t CrossRefGoogle Scholar
  3. Borth N, Heider R, Assadian A, Katinger H (1992) Growth and production kinetics of human x mouse and mouse hybridoma cells at reduced temperature and serum content. J Biotechnol 25:319–331. doi:10.1016/0168-1656(92)90164-5 CrossRefGoogle Scholar
  4. Buntemeyer H, Lutkemeyer D, Lehmann J (1991) Optimization of serum-free fermentation process for antibody production. Cytotechnology 5:57–67. doi:10.1007/BF00365534 CrossRefGoogle Scholar
  5. Choi Y, Ahn CJ, Seong KM, Jung MY, Ahn BY (2003) Inactivated Hantaan virus vaccine derived from suspension culture of Vero cells. Vaccine 21:1867–1873. doi:10.1016/S0264-410X(03)00005-7 CrossRefGoogle Scholar
  6. Chua FK, Yap MG, Oh SK (1994) Hyper-stimulation of monoclonal antibody production by high osmolarity stress in eRDF medium. J Biotechnol 37:265–275. doi:10.1016/0168-1656(94)90133-3 CrossRefGoogle Scholar
  7. Doi Y, Abe S, Yamamoto H, Horie H, Ohyama H, Satoh K, Tano Y, Ota Y, Miyazawa M, Wakabayashi K, Hashizume S (2001) Progress with inactivated poliovirus vaccines derived from the Sabin strains. Dev Biol 105:163–169Google Scholar
  8. Ducommun P, Ruffieux PA, Kadouri A, von Stockar U, Marison IW (2002) Monitoring of temperature effects on animal cell metabolism in a packed bed process. Biotechnol Bioeng 77:838–842. doi:10.1002/bit.10185 CrossRefGoogle Scholar
  9. Ermonval M, Cacan R, Gorgas K, Haas IG, Verbert A, Buttin G (1997) Differential fate of glycoproteins carrying a monoglucosylated form of truncated N-glycan in a new CHO line, MadIA214214, selected for a thermosensitive secretory defect. J Cell Sci 110(Pt 3):323–336Google Scholar
  10. Fox SR, Patel UA, Yap MG, Wang DI (2004) Maximizing interferon-gamma production by Chinese hamster ovary cells through temperature shift optimization: experimental and modeling. Biotechnol Bioeng 85:177–184. doi:10.1002/bit.10861 CrossRefGoogle Scholar
  11. Frazzati-Gallina NM, Paoli RL, Mourão-Fuches RM, Jorge SA, Pereira CA (2001) Higher production of rabies virus in serum-free medium cell cultures on microcarriers. J Biotechnol 92:67–72. doi:10.1016/S0168-1656(01)00362-5 CrossRefGoogle Scholar
  12. Furukawa K, Ohsuye K (1998) Effect of culture temperature on a recombinant CHO cell line producing a C-terminal á-amidating enzyme. Cytotechnology 26:153–164. doi:10.1023/A:1007934216507 CrossRefGoogle Scholar
  13. Hendrick V, Winnepenninckx P, Abdelkafi C, Vandeputte O, Cherlet M, Marique T, Renemann G, Loa A, Kretzmer G, Werenne J (2001) Increased productivity of recombinant tissular plasminogen activator (t-PA) by butyrate and shift of temperature: a cell cycle phases analysis. Cytotechnology 36:71–83. doi:10.1023/A:1014088919546 CrossRefGoogle Scholar
  14. Hu XW, Xiao CZ, Huang ZC, Guo ZX, Zhang ZG, Li ZH (2000) Pilot production of u-PA with porous microcarrier cell culture. Cytotechnology 33:13–19. doi:10.1023/A:1008127310890 CrossRefGoogle Scholar
  15. Junker BH, Wu F, Wang S, Waterbury J, Hunt G, Hennessey J, Aunins J, Lewis J, Silberklang M, Buckland BC (1992) Evaluation of a microcarrier process for large-scale cultivation of attenuated hepatitis A. Cytotechnology 9:173–187. doi:10.1007/BF02521745 CrossRefGoogle Scholar
  16. Kallel H, Rourou S, Majoul S, Loukil H (2003) A novel process for the production of a veterinary rabies vaccine in BHK-21 cells grown on microcarriers in a 20-l bioreactor. Appl Microbiol Biotechnol 61:441–446Google Scholar
  17. Kaufmann H, Mazur X, Fussenegger M, Bailey JE (1999) Influence of low temperature on productivity, proteome and protein phosphorylation of CHO cells. Biotechnol Bioeng 63:573–582. doi:10.1002/(SICI)1097-0290(19990605)63:5<573::AID-BIT7>3.0.CO;2-Y CrossRefGoogle Scholar
  18. Kong D, Gentz R, Zhang JL (1998) Long-term stable production of monocyte-colony inhibition factor (M-CIF) from CHO microcarrier perfusion cultures. Cytotechnology 26:131–138. doi:10.1023/A:1007997412002 CrossRefGoogle Scholar
  19. Kong D, Cardak S, Chen M, Gentz R, Zhang J (1999a) High cell density and productivity culture of Chinese hamster ovary cells in a fluidized bed bioreactor. Cytotechnology 29:215–220. doi:10.1023/A:1008064217040 CrossRefGoogle Scholar
  20. Kong D, Chen M, Gentz R, Zhang J (1999b) Cell growth and protein formation on various microcarriers. Cytotechnology 29:149–156Google Scholar
  21. Landauer K, Wiederkum S, Dürrschmid M, Klug H, Simic G, Blüml G, Doblhoff-Dier O (2003) Influence of carboxymethyl dextran and ferric citrate on the adhesion of CHO cells on microcarriers. Biotechnol Prog 19:21–29. doi:10.1021/bp025568l CrossRefGoogle Scholar
  22. Mendonça RZ, Ioshimoto LM, Mendonça RM, De-Franco M, Valentini EJ, Beçak W, Raw I and Pereira CA (1993) Preparation of human rabies vaccine in VERO cell culture using a microcarrier system. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica [et al.] 26: 1305–1317Google Scholar
  23. Moore A, Mercer J, Dutina G, Donahue CJ, Bauer KD, Mather JP, Etcheverry T, Ryll T (1997) Effects of temperature shift on cell cycle, apoptosis and nucleotide pools in CHO cell batch cultures. Cytotechnology 23:47–54. doi:10.1023/A:1007919921991 CrossRefGoogle Scholar
  24. Nam JH, Ermonval M, Sharfstein ST (2007) Cell attachment to microcarriers affects growth, metabolic activity, and culture productivity in bioreactor culture. Biotechnol Prog 23:652–660. doi:10.1021/bp070007l CrossRefGoogle Scholar
  25. Nam JH, Zhang F, Ermonval M, Linhardt RJ, Sharfstein ST (2008) The effects of culture conditions on the glycosylation of secreted human placental alkaline phosphatase produced in Chinese hamster ovary cells. Biotechnol Bioeng 100:1178–1192. doi:10.1002/bit.21853 CrossRefGoogle Scholar
  26. Percheson PB, Trépanier P, Dugré R, Mabrouk T (1999) A phase I, randomized controlled clinical trial to study the reactogenicity and immunogenicity of a new split influenza vaccine derived from a non-tumorigenic cell line. Dev Biol Stand 98:127–132 discussion 133–4Google Scholar
  27. Pirt SJ (1985) Parameters of growth and analysis of growth data. Principles of microbe and cell cultivation. Blackwell Scientific Publications, Oxford, pp 4–14Google Scholar
  28. Renard JM, Spagnoli R, Mazier C, Salles MF, Mandine E (1988) Evidence that monoclonal antibody production kinetics is related to the integral of the viable cells curve in batch systems. Biotechnol Lett 10:91–96. doi:10.1007/BF01024632 CrossRefGoogle Scholar
  29. Reuveny S, Velez D, Macmillan JD, Miller L (1986) Factors affecting cell growth and monoclonal antibody production in stirred reactors. J Immunol Methods 86:53–59. doi:10.1016/0022-1759(86)90264-4 CrossRefGoogle Scholar
  30. Rodriguez J, Spearman M, Huzel N, Butler M (2005) Enhanced production of monomeric interferon-beta by CHO cells through the control of culture conditions. Biotechnol Prog 21:22–30. doi:10.1021/bp049807b CrossRefGoogle Scholar
  31. Schmid G, Zilg H, Johannsen R (1992) Repeated batch cultivation of rBHK cells on Cytodex 3 microcarriers: antithrombin III, amino acid, and fatty acid metabolic quotients. Appl Microbiol Biotechnol 38:328–333. doi:10.1007/BF00170081 CrossRefGoogle Scholar
  32. Seth G, Hossler P, Yee JC, Hu W-S (2006) Engineering cells for cell culture bioprocessing? Physiological fundamentals. Adv Biochem Eng Biotechnol 101:119–164. doi:10.1007/10_017 Google Scholar
  33. Slikker W 3rd, Desai VG, Duhart H, Feuers R, Imam SZ (2001) Hypothermia enhances bcl-2 expression and protects against oxidative stress-induced cell death in Chinese hamster ovary cells. Free Radic Biol Med 31:405–411. doi:10.1016/S0891-5849(01)00593-7 CrossRefGoogle Scholar
  34. Sugawara K, Nishiyama K, Ishikawa Y, Abe M, Sonoda K, Komatsu K, Horikawa Y, Takeda K, Honda T, Kuzuhara S, Kino Y, Mizokami H, Mizuno K, Oka T, Honda K (2002) Development of Vero cell-derived inactivated Japanese encephalitis vaccine. Biologicals J Int Assoc Biol Stand 30:303–314Google Scholar
  35. Tharmalingam T, Sunley K, Butler M (2008) High yields of monomeric recombinant beta-interferon from macroporous microcarrier cultures under hypothermic conditions. Biotechnol Prog 24:832–838. doi:10.1002/btpr.8 CrossRefGoogle Scholar
  36. Trummer E, Fauland K, Seidinger S, Schriebl K, Lattenmayer C, Kunert R, Vorauer-Uhl K, Weik R, Borth N, Katinger H, Muller D (2006a) Process parameter shifting: part I. Effect of DOT, pH, and temperature on the performance of Epo-Fc expressing CHO cells cultivated in controlled batch bioreactors. Biotechnol Bioeng 94:1033–1044. doi:10.1002/bit.21013 CrossRefGoogle Scholar
  37. Trummer E, Fauland K, Seidinger S, Schriebl K, Lattenmayer C, Kunert R, Vorauer-Uhl K, Weik R, Borth N, Katinger H, Muller D (2006b) Process parameter shifting: part II. Biphasic cultivation—a tool for enhancing the volumetric productivity of batch processes using Epo-Fc expressing CHO cells. Biotechnol Bioeng 94:1045–1052. doi:10.1002/bit.20958 CrossRefGoogle Scholar
  38. Wang MD, Yang M, Huzel N, Butler M (2002) Erythropoietin production from CHO cells grown by continuous culture in a fluidized-bed bioreactor. Biotechnol Bioeng 77:194–203. doi:10.1002/bit.10144 CrossRefGoogle Scholar
  39. Weidemann R, Ludwig A, Kretzmer G (1994) Low temperature cultivation—a step towards process optimisation. Cytotechnology 15:111–116. doi:10.1007/BF00762385 CrossRefGoogle Scholar
  40. Wu SC, Huang GY (2002) Stationary and microcarrier cell culture processes for propagating Japanese encephalitis virus. Biotechnol Prog 18:124–128. doi:10.1021/bp010120q CrossRefGoogle Scholar
  41. Xiao CZ, Huang ZC, Li WQ, Hu XW, Qu WL, Gao LH, Liu GY (1999) High density and scale-up cultivation of recombinant CHO cell line and hybridomas with porous microcarrier Cytopore. Cytotechnology 30:143–147. doi:10.1023/A:1008038609967 CrossRefGoogle Scholar
  42. Yoon SK, Song JY, Lee GM (2003) Effect of low culture temperature on specific productivity, transcription level, and heterogeneity of erythropoietin in Chinese hamster ovary cells. Biotechnol Bioeng 82:289–298. doi:10.1002/bit.10566 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jong Hyun Nam
    • 1
  • Myriam Ermonval
    • 2
  • Susan T. Sharfstein
    • 1
  1. 1.Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary StudiesRensselaer Polytechnic InstituteTroyUSA
  2. 2.Département de VirologieInstitut PasteurParisFrance

Personalised recommendations