Skip to main content
Log in

Characterization of type I, III and V collagens in high-density cultured tenocytes by triple-immunofluorescence technique

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

The purpose of this study is to examine the intracellular distribution of collagen types I, III and V in tenocytes using triple-label immunofluorescence staining technique in high-density tenocyte culture on Filter Well Inserts (FWI). The tenocytes were incubated for 4 weeks under monolayer conditions and for 3 weeks on FWI. At the end of the third week of high-density culture, we observed tenocyte aggregation followed by macromass cluster formation. Immunofluorescence labeling with anti-collagen type I antibody revealed that the presence of collagen type I was mostly around the nucleus. Type III collagen was more diffused in the cytoplasm. Type V collagen was detected in fibrillar and vesicular forms in the cytoplasm. We conclude that, the high-density culture on FWI is an appropriate method for the production of tenocytes without loosing specialized processes such as the synthesis of different collagen molecules. We consider that the high-density culture system is suitable for in vitro applications which affect tendon biology and will improve our understanding of the biological behavior of tenocytes in view of adequate matrix structure synthesis. Such high-density cultures may serve as a model system to provide sufficient quantities of tenocytes to prepare tenocyte-polymer constructs for tissue engineering applications in tendon repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco’s Modified Eagle’s Medium

FBS:

Fetal Bovine Serum

FWI:

Filter Well Insert

PBS:

Phosphate Buffered Saline

References

  • Ahmed IM, Lagopoulos M, McConnell P, Soames RW, Sefton GK (1998) Blood supply of the Achilles tendon. J Orthop Res 16:591–596. doi:10.1002/jor.1100160511

    Article  CAS  Google Scholar 

  • Awad HA, Butler DL, Boivin GP, Smith FN, Malaviya P, Huibregtse B, Caplan AI (1995) Autologous mesenchymal stem cell-mediated repair of tendon. Tissue Eng 5:267–277. doi:10.1089/ten.1999.5.267

    Article  Google Scholar 

  • Bernard-Beaubois K, Hecquet C, Houcine O, Hayem G, Adolphe M (1997) Culture and characterization of juvenile rabbit tenocytes. Cell Biol Toxicol 13:103–113. doi:10.1023/B:CBTO.0000010395.51944.2a

    Article  CAS  Google Scholar 

  • Birk DE (2001) Type V collagen: heterotypic type I/V collagen interactions in the regulation of fibril assembly. Micron 32:223–237. doi:10.1016/S0968-4328(00)00043-3

    Article  CAS  Google Scholar 

  • Birk DE, Trelstad RL (1986) Extracellular compartments in tendon morphogenesis: collagen fibril, bundle, and macroaggregate formation. J Cell Biol 103:231–240. doi:10.1083/jcb.103.1.231

    Article  CAS  Google Scholar 

  • Bruns RR (1984) Beaded filaments and long-spacing fibrils: relation to type VI collagen. J Ultrastruct 89:136–145. doi:10.1016/S0022-5320(84)80010-6

    Article  CAS  Google Scholar 

  • Cao Y, Vacanti JP, Ma X, Paige KT, Upton J, Chowanski Z, Schloo B, Langer R, Vacanti CA (1994) Generation of neo-tendon using synthetic polymers seeded with tenocytes. Transplant Proc 26:3390–3392

    CAS  Google Scholar 

  • Elliott DH (1965) Structure and function of mammalian tendon. Biol Rev Camb Philos Soc 40:392–421. doi:10.1111/j.1469-185X.1965.tb00808.x

    Article  CAS  Google Scholar 

  • Evans CE, Trail IA (1998) Fibroblast-like cells from tendons differ from skin fibroblasts in their ability to form three-dimensional structures in vitro. J Hand Surgery 23:633–641

    CAS  Google Scholar 

  • Fleischmayer R, Perlish JS, Burgeson RE, Shaikh-Bahai F, Timpl R (1990) Type I and type III collagen interactions during fibrillogenesis. Ann N Y Acad Sci 580:161–175. doi:10.1111/j.1749-6632.1990.tb17927.x

    Article  Google Scholar 

  • Freshney RI (2001) Culture of animal cells: a manual of basic techniques, 4th edn. Wiley-Liss, Canada

    Google Scholar 

  • Gey GO, Svotelis M, Foard M, Bang FB (1974) Long-term growth of chicken fibroblasts on a collagen substrate. Exp Cell Res 84:63–71

    Article  CAS  Google Scholar 

  • Gillard GC, Merrilees MJ, Bell-Booth PG, Reilly HC, Flint MH (1977) The proteoglycan content and the axial periodicity of collagen in tendon. Biochem J 163:145–151

    CAS  Google Scholar 

  • Hong BS, Davison PF, Cannon DJ (1979) Isolation and characterization of distinct type of collagen from bovine fetal membranes and other tissues. Biochemistry 18:4278–4282. doi:10.1021/bi00587a003

    Article  CAS  Google Scholar 

  • Koob TJ, Willis TA, Qiu YS, Hernandez DJ (2001) Biocompatibility of NDGA-polymerized collagen fibers. II. Attachment, proliferation, and migration of tendon fibroblasts in vitro. J Biomed Mater Res 56:40–48. doi:10.1002/1097-4636(200107)56:1<40::AID-JBM1066>3.0.CO;2-I

    Article  CAS  Google Scholar 

  • Lin SJ, Lo W, Tan HY, Chan JY, Chen WL, Wang SH, Sun Y, Lin WC, Chen JS, Hsu CJ, Tjiu JW, Yu HS, Jee SH, Dong CY (2006) Prediction of heat-induced collagen shrinkage by use of second harmonic generation microscopy. J Biomed Opt 11:34020. doi:10.1117/1.2209959

    Article  Google Scholar 

  • Linsenmayer TF, Gibney E, Igoe F (1993) Type V collagen: molecular structure and fibrillar organization of the chicken alpha 1(V) NH2-termianl domain, a putative regulator of corneal fibrillogenesis. J Cell Biol 121:1181. doi:10.1083/jcb.121.5.1181

    Article  CAS  Google Scholar 

  • Möller HD, Evans CH, Maffulli N (2000) Current aspects of tendon healing. Orthopad 29:182–187

    Google Scholar 

  • Nakagawa Y, Majima T, Nagashima K (1994) Effect of ageing on ultrastructure of slow and fast skeletal muscle tendon in rabbit Achilles tendons. Acta Physiol Scand 152:307–313. doi:10.1111/j.1748-1716.1994.tb09810.x

    Article  CAS  Google Scholar 

  • Okuda Y, Gorski JP, An KN, Amadio PC (1987) Biochemical, histological, and biomechanical analysis of canine tendon. J Orthop Res 5:60–68. doi:10.1002/jor.1100050109

    Article  CAS  Google Scholar 

  • Schulze-Tanzil G, Mobasheri A, Clegg PD, Sendzik J, John T, Shakibaei M (2004) Cultivation of human tenocytes in high-density culture. Histochem Cell Biol 122:219–228. doi:10.1007/s00418-004-0694-9

    Article  CAS  Google Scholar 

  • Schwarz R, Colarusso L, Doty P (1976) Maintenance of differentiation in primary cultures of avian tendon cells. Exp Cell Res 102:63–71. doi:10.1016/0014-4827(76)90299-8

    Article  CAS  Google Scholar 

  • Scott JE (1984) The periphery of the developing collagen fibril. Biochem J 218:229–233

    CAS  Google Scholar 

  • Scott JE, Orford CR, Huges EW (1981) Proteoglycan-collagen arrangements in rat tail tendon. Biochem J 195:573–581

    CAS  Google Scholar 

  • Trelstad RL (1982) Multistep assembly of type I collagen fibrils. Cell 28:197–198. doi:10.1016/0092-8674(82)90334-8

    Article  CAS  Google Scholar 

  • Vogel KG, Paulsson M, Heinegard D (1984) Specific inhibition of type I and II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem J 223:587–597

    CAS  Google Scholar 

  • Woo SL, Hildebrand K, Watanabe N, Fenwick JA, Papageorgion CD, Wang JH (1999) Tissue engineering of ligament and tendon healing. Clin Orthop Relat Res 367:S312–S323. doi:10.1097/00003086-199910001-00030

    Article  Google Scholar 

  • Zimmermann B, Shröter-Kermani C, Shakibaei M, Merker H-J (1992) Chondrogenesis, cartilage maturation and transformation of chondrocytes in high-density culture of mouse limb bud mesodermal cells. Eur Arch Biol 103:93–111

    Google Scholar 

Download references

Acknowledgments

This study was partially funded by Hacettepe University Scientific Research Unit (project number is 06 003 101 006), and it has been submitted to Hacettepe University as the MSc thesis of Cansın Yaylalı. The tissue culture and fluorescent microscopy studies were conducted at the Central Laboratory of Ankara University Biotechnology Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cansın Güngörmüş.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Güngörmüş, C., Kolankaya, D. Characterization of type I, III and V collagens in high-density cultured tenocytes by triple-immunofluorescence technique. Cytotechnology 58, 145–152 (2008). https://doi.org/10.1007/s10616-009-9180-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-009-9180-5

Keywords

Navigation