Skip to main content

Advertisement

Log in

Alginate cell encapsulation: new advances in reproduction and cartilage regenerative medicine

  • Special Issue Stem Cells
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Cell encapsulation, a strategy whereby a pool of live cells is entrapped within a semipermeable membrane, represents an evolving branch of biotechnology and regenerative medicine. For example, over the last 20 years, male and female gametes and embryos have been encapsulated with or without somatic cells for different purposes, such as in vitro gametogenesis, embryo culture, cell preservation and semen controlled release. Beside that, cell encapsulation technology in alginate, which is a natural biodegradable polymer that mimics the extracellular matrix and supports both cell functions and metabolism, has been developed with the aim of obtaining three-dimensional (3D) cultures. In this context, adipose-derived stromal vascular fraction (SVF) has attracted more and more attention because of its enormous potential in tissue regeneration. In fact, the SVF represents a rich source of mesenchymal cells (ADSCs), potentially able to differentiate into adipocytes, chondrocytes, osteoblasts, myocytes, cardiomyocytes, hepatocytes, and neuronal, epithelial and endothelial cells. These cells are ideal candidates for use in regenerative medicine, tissue engineering, including gene therapy and cell replacement cancer therapies. As long as technological resources are available for large-scale cell encapsulation intended for advanced therapies (gene therapy, somatic cell therapy and tissue engineering), the state-of-the-art in this field is reviewed in terms of scientific literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrè P (2002) Facial lipoatrophy secondary to a new synthetic filler device (Profill) treated by lipofilling. J Cosmet Dermatol 1:59–61. doi:10.1046/j.1473-2165.2002.00044.x

    Article  Google Scholar 

  • Barrilleux B, Phinney DG, Prockop DJ, O’Connor K (2006) Review: ex-vivo engineering of living tissues with adult stem cells. Tissue Eng 12:3007–3019. doi:10.1089/ten.2006.12.3007

    Article  Google Scholar 

  • Benzoni E, Torre ML, Faustini M, Stacchezzini S, Cremonesi F, Conte U, Villani S, Russo V, Ricevuti G, Vigo D (2005) Transient transfection of porcine granulosa cells after 3D culture in barium alginate capsules. Int J Immunopathol Pharmacol 18:677–682

    CAS  Google Scholar 

  • Bissell MJ, Rizki A, Mian IS (2003) Tissue architecture: the ultimate regulator of breast epithelial function. Curr Opin Cell Biol 15:753–762. doi:10.1016/j.ceb.2003.10.016

    Article  CAS  Google Scholar 

  • Braccini I, Pérez S (2001) Molecular basis of C(2+)-induced gelation in alginates and pectins: the egg-box model revisited. Biomacromolecules 2:1089–1096. doi:10.1021/bm010008g

    Article  CAS  Google Scholar 

  • Brzoska M, Geiger H, Gauer S, Baer P (2005) Epithelial differentiation of human adipose tissue-derived adult stem cells. Biochem Biophys Res Commun 330:142–150. doi:10.1016/j.bbrc.2005.02.141

    Article  CAS  Google Scholar 

  • Casteilla L, Charrière G, Laharrague P, Cousin B, Planat-Benard V, Pèricaud L, Chavoin JP (2004) Adipose tissue, plastic and reconstructive surgery: come back to sources. Ann Chir Plast Esthet 49:409–418. doi:10.1016/j.anplas.2004.08.001

    Article  CAS  Google Scholar 

  • Chang TMS (1964) Semipermeable microcapslules. Science 146:524–525. doi:10.1126/science.146.3643.524

    Article  CAS  Google Scholar 

  • Coleman SR (2004) Rèinjection de graisse autologue ou lipofilling ou Lipostructure®. Ann Chir Plast Esthet 49:456–458. doi:10.1016/j.anplas.2004.09.005

    Article  Google Scholar 

  • Conte U, Torre ML, Maggi L, Giunchedi P, Vigo D, Maffeo G, Russo V (1999) EP0922451

  • De Ugarte DA, Ashjian PH, Elbarbary A, Hedrick MH (2003) Future of fat as raw material for tissue regeneration. Ann Plast Surg 50:215–219. doi:10.1097/01.SAP.0000029661.38066.15

    Article  Google Scholar 

  • Dicker A, LeBlanc K, Åstrom G, van Harmelen V, Götherström C, Blomqvist L, Arner P, Rydén M (2005) Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp Cell Res 308:283–290. doi:10.1016/j.yexcr.2005.04.029

    Article  CAS  Google Scholar 

  • Draget KI, Gaserod O, Aune I (2001) Effects of molecular weight and elastic segment flexibility on syneresis in Ca alginate gels. Food Hydrocoll 15:485–490. doi:10.1016/S0268-005X(01)00046-7

    Article  CAS  Google Scholar 

  • Ellenborgen R (2000) Fat transfer: current use in practise. Cinical Plast Surg 27:545–546

    Google Scholar 

  • Even-Ram S, Yamada KM (2005) Cell migration in 3D matrix. Curr Opin Cell Biol 17:524–532. doi:10.1016/j.ceb.2005.08.015

    Article  CAS  Google Scholar 

  • Fraser JK, Wulur I, Alfonso Z, Hedrick MH (2006) Fat tissue an underappreciated source of stem cells for biotechnology. Trends Biotechnol 24:150–154. doi:10.1016/j.tibtech.2006.01.010

    Article  CAS  Google Scholar 

  • Gaetani P, Torre ML, Klinger M, Faustini M, Crovato F, Bucco M, Marazzi M, Chlapanidas T, Levi D, Tancioni F, Vigo D, Rodriguez y Baena R (2008) Adipose-derived stem cell therapy for intervertebral disc regeneration: an in vitro reconstructed tissue in alginate capsules. Tissue Eng Part A 141:415–423

    Google Scholar 

  • Gomillion CT, Burg K (2006) Stem cells and adipose tissue engineering. Biomaterials 27:6052–6605. doi:10.1016/j.biomaterials.2006.07.033

    Article  CAS  Google Scholar 

  • Goosen MF, O’Shea GM, Gharapetian HM, Chou S, Sun AM (1985) Optimization of microencapsulation parameters: Semipermeable microcapsules as a bioartificial pancreas. Biotechnol Bioeng 27(2):146–150. doi:10.1002/bit.260270207

    Article  CAS  Google Scholar 

  • Griffith LG, Naughton G (2002) Tissue engineering—current challenges and expanding opportunities. Science 295:1009–1014. doi:10.1126/science.1069210

    Article  CAS  Google Scholar 

  • Guilak F, Lott KE, Awad HA, Cao Q, Hicok KC, Fermor B, Gimble JM (2006) Clonal analysis of the differentiation potential of human adipose-derived adult stem cells. J Cell Physiol 206:229–237. doi:10.1002/jcp.20463

    Article  CAS  Google Scholar 

  • Helder MN, Knippenberg M, Klein-Nulend J, Wuisman PI (2007) Stem cells from adipose tissue allow challenging new concepts for regenerative medicine. Tissue Eng 13:1799–1808. doi:10.1089/ten.2006.0165

    Article  CAS  Google Scholar 

  • Herrler A, Eisner S, Bach V, Weissenborn U, Beier HM (2006) Cryopreservation of spermatozoa in alginic acid capsules. Fertil Steril 85:208–213. doi:10.1016/j.fertnstert.2005.06.049

    Article  CAS  Google Scholar 

  • Johnson LA, Weitze KF, Fiser P, Mawxell WMC (2000) Storage of boar semen. Anim Reprod Sci 62:143–172. doi:10.1016/S0378-4320(00)00157-3

    Article  CAS  Google Scholar 

  • Klinger M, Marazzi M, Vigo D, Torre ML (2008) Fat injection in severe burn outcomes: a new perspective of scar remodelling and reduction. Aesthetic Plast Surg 32:465–469. doi:10.1007/s00266-008-9122-1

    Article  CAS  Google Scholar 

  • Lee J, Cuddihy MJ, Kotov NA (2008) Three-dimensional cell culture matrices: state of the art. Tissue Eng Part B 1:61–86. doi:10.1089/teb.2007.0150

    Article  Google Scholar 

  • Li X, Lee JP, Balian G, Anderson DG (2005) Modulation of chondrocytic properties of fat-derived mesenchymal cells in co-cultures with nucleus pulposus. Connect Tissue Res 46:75–82. doi:10.1080/03008200590954104

    Article  CAS  Google Scholar 

  • Lim F, Sun AM (1980) Microencapsulated islets as bioartificial endocrine pancreas. Science 210:908–910. doi:10.1126/science.6776628

    Article  CAS  Google Scholar 

  • Liu WF, Chen CS (2007) Cellular and multicellular form and function. Adv Drug Deliv Rev 59:1319–1328. doi:10.1016/j.addr.2007.08.011

    Article  CAS  Google Scholar 

  • Lukashev ME, Werb Z (1998) ECM signalling: orchestrating cell behaviour and misbehaviour. Trends Cell Biol 8:437–441. doi:10.1016/S0962-8924(98)01362-2

    Article  CAS  Google Scholar 

  • Martina M, Hutmacher DW (2007) Biodegradable polymers applied in tissue engineering research: a review. Polym Int 56:145–151. doi:10.1002/pi.2108

    Article  CAS  Google Scholar 

  • Matsumoto D, Sato K, Gonda K, Takaki Y, Shigeura T, Sato T, Aiba-Kojima E, Iizura F, Keita I, Suga H, Yoshimura K (2006) Cell-assisted lipotransfer: supportive use of human adipose-derived cells for soft tissue augmentation with lipoinjection. Tissue Eng 12:3375–3381. doi:10.1089/ten.2006.12.3375

    Article  CAS  Google Scholar 

  • Maxwell WMC, Johnson LA (1999) Physiology of spermatozoa at high dilution rates: the influence of seminal plasma. Theriogenology 52:1353–1362. doi:10.1016/S0093-691X(99)00222-8

    Article  CAS  Google Scholar 

  • Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM (2006) Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells 24:376–385. doi:10.1634/stemcells.2005-0234

    Article  Google Scholar 

  • Mizuno H, Hyakusoku H (2003) Mesengenic potential and future clinical perspective of human processed lipoaspirate cells. J Nippon Med Sch 70:300–306. doi:10.1272/jnms.70.300

    Article  Google Scholar 

  • Munkittrick TW, Nebel RL, Saacke RG (1992) Accessory sperm numbers for cattle inseminated with protamine sulphate microcapsules. J Dairy Sci 75:725–731

    Article  CAS  Google Scholar 

  • Munoz-Garay C, De la Vega-Beltràn JL, Delgado R (2001) Inwardly rectify K+ channels in spermatogenic cells: functional expression and implication in sperm capacitation. Dev Biol 234:261–274. doi:10.1006/dbio.2001.0196

    Article  CAS  Google Scholar 

  • Muschler GF, Nakamoto C, Griffith LG (2004) Engineering principles of clinical cell-based tissue engineering. J Bone Joint Surg Am 86:1541–1558

    Google Scholar 

  • Musina RA, Bekchanova ES, Belyavskii V (2006) Differentiation potential of mesenchymal stem cells of different origin. Technol Biol Med 2:147–151

    Google Scholar 

  • Nakagami H, Morishita R, Maeda K, Kikuchi Y, Ogihara T, Kaneda Y (2006) Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J Atheroscler Thromb 13:77–81

    Google Scholar 

  • Nebel RL, Bame JH, Saacke RG, Lim F (1985) Microencapsulation of bovine spermatozoa. J Anim Sci 60(6):1631–1639

    CAS  Google Scholar 

  • Nebel RL, Vishwanath R, McMillan WH, Pitt CJ (1996) Microencapsulation of bovine spermatozoa viability and fertility. Anim Reprod Sci 44:79–89. doi:10.1016/0378-4320(96)01540-0

    Article  Google Scholar 

  • Nebel RL, Vishwanath R, McMillan WH, Saacke RG (1993) Microencapsulation of bovine spermatozoa for use in artificial insemination: a review. Reprod Fertil Dev 5:701–712. doi:10.1071/RD9930701

    Article  CAS  Google Scholar 

  • O’Halloran D, Pandit AS (2007) Tissue-engineering approach to regenerating the intervertebral disc. Tissue Eng 13:1927–1954. doi:10.1089/ten.2005.0608

    Article  CAS  Google Scholar 

  • Pangas SA, Saudye H, Shea LD, Woodruff TK (2003) Novel approach for the three-dimensional culture of granulose cell-oocyte complexes. Tissue Eng 9:1013–1021. doi:10.1089/107632703322495655

    Article  CAS  Google Scholar 

  • Patrick CW (2000) Adipose tissue engineering: the future of breast and soft tissue reconstruction following tumor resection. Semin Surg Oncol 19:302–311. doi:10.1002/1098-2388(200010/11)19:3<302::AID-SSU12>3.0.CO;2-S

    Article  Google Scholar 

  • Patrick CW (2001) Tissue engineering strategies for adipose tissue repair. Anat Rec 263:361–366. doi:10.1002/ar.1113

    Article  CAS  Google Scholar 

  • Richardson SM, Walker RV, Parker S, Rhodes NP, Hunt JA, Freemont AJ, Hoyland JA (2006) Intervertebral disc cell-mediated mesenchymal stem cell differentiation. Stem Cells 24:707–716. doi:10.1634/stemcells.2005-0205

    Article  CAS  Google Scholar 

  • Rigotti G, Marchi A, Galiè M, Baroni G, Benati D, Krampera M, Pasini A, Sbarbati A (2007) Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg 119:1409–1422. doi:10.1097/01.prs.0000256047.47909.71

    Article  CAS  Google Scholar 

  • Rodriguez AM, Elabd C, Delteil F, Astier J, Vernochet C, Saint-Marc P, Guesnet J, Guezennec A, Amri EZ, Dani C, Ailhaud G (2004) Adipocyte differentiation of multipotent cells estabilished from human adipose tissue. Biochem Biophys Res Commun 315:255–263. doi:10.1016/j.bbrc.2004.01.053

    Article  CAS  Google Scholar 

  • Rodriguez AM, Elabd C, Amri E, Ailhaud G, Dani C (2005) The human adipose tissue is a source of multipotent stem cells. Biochimie 87:125–128. doi:10.1016/j.biochi.2004.11.007

    Article  CAS  Google Scholar 

  • Romanov A, Darevskaya A, Merzlikina N (2005) Mesenchymal stem cells from human bone marrow and adipose tissue: isolation, characterization, and differentiation potentialities. Cell Technol Biol Med 3:158–163

    Google Scholar 

  • Rydèn M, Dicker A, Götherström C, Aström G, Tammik C, Arner P, Le Blanc K (2003) Functional characterization of human mesenchymal stem cell-derived adipocytes. Biochem Biophys Res Commun 14:391–397. doi:10.1016/j.bbrc.2003.10.010

    Article  CAS  Google Scholar 

  • Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF (1995) A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 270:26746–26749. doi:10.1074/jbc.270.45.26746

    Article  CAS  Google Scholar 

  • Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z, Schreiber RE, Fraser JK, Hedrick MH (2005) Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med 3:132–141. doi:10.2302/kjm.54.132

    Article  Google Scholar 

  • Tholpady SS, Llull R, Ogle RC, Rubin JP, Futrell JW, Katz AJ (2006) Adipose tissue: stem cell and beyond. Clin Plast Surg 33:55–62. doi:10.1016/j.cps.2005.08.004

    Article  Google Scholar 

  • Torre ML (2007) Microincapsulazione di cellule staminali da tessuto adiposo per la terapia rigenerativa di tessuti epiteliali. Acta Vulcanol 5:48–50

    Google Scholar 

  • Torre ML, Maggi L, Vigo D, Galli A, Bornaghi V, Conte U (2000) Controlled release of swine semen encapsulated in calcium alginate beads. Biomaterials 21:1493–1498. doi:10.1016/S0142-9612(00)00035-1

    Article  CAS  Google Scholar 

  • Torre ML, Munari E, Albani E, Levi-Setti PE, Villani S, Faustini M, Conte U, Vigo D (2006) In vitro maturation of human oocytes in a follicle-mimicking three-dimensional coculture. Fertil Steril 86:572–576. doi:10.1016/j.fertnstert.2006.02.090

    Article  Google Scholar 

  • Torre ML, Faustini M, Klinger M, Vigo D (2007) Cell encapsulation in reproduction. Recent Patents Drug Deliv Formul 1:85

    Google Scholar 

  • Uludag H, De-Vos P, Tresco PA (2000) Technology of mammalian cell encapsulation. Adv Drug Deliv Rev 42:29–64. doi:10.1016/S0169-409X(00)00053-3

    Article  CAS  Google Scholar 

  • Vigo D, Torre ML, Faustini M, Munari E, Russo V, Conte U (2005a) I. Capsules containing seminal material for artificial insemination. European Application WO2006106400

  • Vigo D, Villani S, Faustini M, Accorsi PA, Galeati G, Munari E, Russo V, Asti A, Conte U, Torre ML (2005b) A follicle-like model by granulosa cell encapsulation in a barium alginate/protamine membrane. Tissue Eng 11:709–714. doi:10.1089/ten.2005.11.709

    Article  CAS  Google Scholar 

  • Vigo D, Russo V, Faustini M, Stacchezzini S, Conte U, Torre ML, Accorsi PA, Galeati G, Spinaci M (2006) Preparation of three-dimensional mammalian ovarian follicular cells and ovarian follicle culture systems in a biocompatible matrix. European Patent EP1706103

  • Villani S, Marazzi M, Bucco M, Faustini M, Klinger M, Gaetani P, Crovato F, Vigo D, Caviggioli F, Torre ML (2008) Statistical approach in alginate membrane formulation for cell encapsulation in a GMP-based cell factory. Acta Biomater 4:943–949. doi:10.1016/j.actbio.2008.01.007

    Article  CAS  Google Scholar 

  • Von Heimburg D, Zachariah S, Heschel I, Kuhuling H, Schoof H, Hafemann B, Paulla N (2001) Human preadypocites seeded on freeze-dried collagen scaffold investigated in vitro and in vivo. Biomaterials 22:429–438. doi:10.1016/S0142-9612(00)00186-1

    Article  Google Scholar 

  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432. doi:10.1038/372425a0

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Faustini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghidoni, I., Chlapanidas, T., Bucco, M. et al. Alginate cell encapsulation: new advances in reproduction and cartilage regenerative medicine. Cytotechnology 58, 49–56 (2008). https://doi.org/10.1007/s10616-008-9161-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-008-9161-0

Keywords

Navigation