, Volume 56, Issue 3, pp 219–231 | Cite as

Small interfering RNA knockdown of mini-TyrRS and mini-TrpRS effects angiogenesis in human umbilical vein endothelial cells in hypoxic culture

  • Rui Zeng
  • Yu-cheng Chen
  • Zhi ZengEmail author
  • Rui Liu
  • Ou Qiang
  • Xiao-fei Jiang
  • Xiao-xia Liu
  • Xian Li
  • Hao-yu Wang
Original Research


Aim We studied the role of mini-TyrRS and mini-TrpRS in angiogenesis by using small interfering RNA-mediated mini-TyrRS/mini-TrpRS knockout in hypoxic culture of human umbilical vein endothelial cells. Methods SiRNA was used as the main method to inhibited the gene function. Silencing efficiency was assayed by real-time reverse transcription-polymerase chain reaction and western blotting. The angiogenic activity in vitro was evaluated by transwell migration assay and Matrigel-induced capillary tube formation in hypoxic culture. Cell proliferation was determined by crystal violet staining. Results The results showed that levels of the mini-TyrRS/mini-TrpRS gene and protein in mock transfection group and negative control group were higher, but noticeably decreased in experimental group. However, no significant difference was detected between mock transfection group and negative control group, but there was a statistically significant difference compared with experimental group. For mini-TyrRS-siRNA group, the cell migration, tube formation and the rate of cell proliferation were respectively inhibited by (47.4, 56.3, 65.4, 73.7%), (60.5, 69.1, 75.9, 83.6%) and (40.4, 56.2, 61.2, 68.0%). For mini-TrpRS-siRNA, were respectively increased by (18.0, 33.8, 45.1, 56.4%), (18.3, 31.2, 40.3, 45.7%) and (8.4, 26.4, 38.2, 46.6%). Conclusion These results indicated that angiogenesis is either stimulated by mini-TyrRS or inhibited by mini-TrpRS in matrigel models in hypoxic culture, raising the possibility that mini-TyrRS stimulates a common downstream signaling event. Thus, naturally occurring fragments of two proteins involved in translation, TyrRS and TrpRS, have opposing activity on endothelial cell angiogenesis in the matrigel assays. The opposing activities of the two tRNA synthetases suggest tight regulation of the balance between pro- and anti-angiogenic stimuli.


Mini-TyrRS Mini-TrpRS Hypoxia Human umbilical vein endothelial cells siRNA Angiogenesis 


  1. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Sciences (New York) 296:550–553Google Scholar
  2. Byrom M, Pallotta V, Brown D et al (2002) Visualizing SiRNA in mammalian cells: fluorescence analysis of the RNAi effect. Ambion Technotes 9(3):6–8Google Scholar
  3. Clark LI, Dewald B, Geiser T et al (1993) Platelet factor 4 binds to interleukin 8 receptors and activates neutrophils when its N terminus is modified with Glu-Leu-Arg. Proc Natl Acad Sci USA 90:3574–3577. doi: 10.1073/pnas.90.8.3574 CrossRefGoogle Scholar
  4. Elbashir SM, Harborth J, Lendeckel W et al (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in Drosophila melanogaster embryo lysate. Nature 411:494–498. doi: 10.1038/35078107 CrossRefGoogle Scholar
  5. Ewalt KL, Schimmel P (2002) Activation of angiogenic signaling pathways by two human tRNA synthetases. Biochemistry 41:13344–13349. doi: 10.1021/bi020537k CrossRefGoogle Scholar
  6. Fleckner J, Rasmussen HH, Justesen J (1991) Human interferon gamma potently induces the synthesis of a 552 kDa protein highly homologous to rabbit peptide chain release factor and bovine tryptophan. Proc Natl Acad Sci USA 88:11520–11524. doi: 10.1073/pnas.88.24.11520 CrossRefGoogle Scholar
  7. Fleckner J et al (1995) Differential regulation of the human interferon inducible tryptophanyl-tRNA synthetase by various cytokines in cell lines. Cytokine 7:70–77. doi: 10.1006/cyto.1995.1009 CrossRefGoogle Scholar
  8. Folkman J (1985) Toward an understanding of angiogenesis: search and discovery. Perspect Biol Med 29:10–36Google Scholar
  9. Folkman J, Haudenschild C (1980) Angiogenesis in vitro. Nature 288:551–556. doi: 10.1038/288551a0 CrossRefGoogle Scholar
  10. Grant DS, Tashiro K, Segui-Real B et al (1989) Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like structures in vitro. Cell 58:933–943. doi: 10.1016/0092-8674(89)90945-8 CrossRefGoogle Scholar
  11. Ibba M (2000) SÊ ll D. Aminoacyl-tRNA synthesis. Annu Rev Biochem 69:617–650. doi: 10.1146/annurev.biochem.69.1.617 CrossRefGoogle Scholar
  12. Jeong EJ, Hwang GS, Kim KH et al (2000) Structural analysis of multi-functional peptide motifs present in human bifunctional tRNA synthetase: identification of RNA-binding residues and functional implications for tandem repeats. Biochemistry 39:15775–15782. doi: 10.1021/bi001393h CrossRefGoogle Scholar
  13. Jorgensen R, Sogaard TM, Rossing AB, Martensen PM, Justesen J (2000) Identification and characterization of human mitochondrial tryptophanyl-tRNA synthetase. J Biol Chem 275:16820–16826. doi: 10.1074/jbc.275.22.16820 CrossRefGoogle Scholar
  14. Kise Y et al (2004) A short peptide insertion crucial for angiostatic activity of human tryptophanyl-tRNA synthetase. Nat Struct Mol Biol 11:149–156. doi: 10.1038/nsmb722 CrossRefGoogle Scholar
  15. Kubota Y, Kleinman HK, Martin GR et al (1988) Roles of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol 107:1589–1598. doi: 10.1083/jcb.107.4.1589 CrossRefGoogle Scholar
  16. Lee NS, Dohjima T, Bauer G et al (2001) Expression of small interfering RNAs targeted against HIV-1 rev transcripts in human cells. Nat Biotechnol 19:500–505Google Scholar
  17. Lee SW et al (2004) Aminoacyl-tRNA synthetase complexes: beyond translation. J Cell Sci 117:3725–3734. doi: 10.1242/jcs.01342 CrossRefGoogle Scholar
  18. Maciag T, Kadish J, Wilkins L et al (1982) Organizational behavior of human umbilical vein endothelial cells. J Cell Biol 94:511–520. doi: 10.1083/jcb.94.3.511 CrossRefGoogle Scholar
  19. Madri JA, Williams SK (1983) Capilary endothelial cell culture phenotypic modulation by matrix components. J Cell Biol 97:153–165. doi: 10.1083/jcb.97.1.153 CrossRefGoogle Scholar
  20. Martinis SA, Plateau P, Cavarelli J et al (1999) Aminoacyl-tRNA synthetases: a family of expanding functions. EMBO J 18:4591–4596. doi: 10.1093/emboj/18.17.4591 CrossRefGoogle Scholar
  21. Montesano RL, Orci L, Vassalli P (1983) In vitro rapid organization of endothelial cells into capillary-like networks is promoted by collagen matrices. J Cell Biol 97:1648–1652. doi: 10.1083/jcb.97.5.1648 Google Scholar
  22. Otani A, Slike BM, Dorrell M et al (2002) A fragment of human TrpRS as a potent antagonist of ocular angiogenesis. Proc Natl Acad Sci USA 99:178–183. doi: 10.1073/pnas.012601899 CrossRefGoogle Scholar
  23. Paddison PJ, Caudy AA, Berstein E et al (2002) Short hairpin RNAs induces sequences-specific silencing in mammalian cells. Genes Dev 16:948–958. doi: 10.1101/gad.981002 CrossRefGoogle Scholar
  24. Paul CP, Good PD, Winer I (2002) Effective expression of small interfering RNA in human cells. Nat Biotechnol 20:505–508. doi: 10.1038/nbt0502-505 CrossRefGoogle Scholar
  25. Ribas de Pouplana L, Frugier M, Quinn CL, Schimmel P (1996) Evidence that two present-day components needed for the genetic code appeared after nucleated cells separated from eubacteria. Proc Natl Acad Sci USA 93:166–170. doi: 10.1073/pnas.93.1.166 CrossRefGoogle Scholar
  26. Risau W (1997) Mechanism of angiogenesis. Nature 386:671–674. doi: 10.1038/386671a0 CrossRefGoogle Scholar
  27. Shaw AC, Rossel LM, Roepstorff P et al (1999) Mapping and identification of interferon gamma-regulated HeLa cell proteins separated by immobilized pH gradient two-dimensional gel electrophoresis. Electrophoresis 20:984–993. doi :10.1002/(SICI)1522-2683(19990101)20:4/5≤984::AID-ELPS984≥3.0.CO;2-RGoogle Scholar
  28. Sui G, Soohoo C, Affar EB et al (2002) A DNA vector-based RNAi technology to suppress gene expression in mammalian cells. Proc Natl Acad Sci USA 99:5515–5520. doi: 10.1073/pnas.082117599 CrossRefGoogle Scholar
  29. Tolstrup AB, Bejder A, Fleckner J et al (1995) Transcriptional regulation of the interferon-γ inducible tryptophanyl-tRNA synthetase includes alternative splicing. J Biol Chem 270:397–403. doi: 10.1074/jbc.270.1.397 CrossRefGoogle Scholar
  30. Tzima E et al (2005) VE-cadherin links tRNA synthetase cytokine to anti-angiogenic function. J Biol Chem 280:2405–2408. doi: 10.1074/jbc.C400431200 CrossRefGoogle Scholar
  31. Wakasugi K, Schimmel P (1999a) Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science 284:147–151. doi: 10.1126/science.284.5411.147 CrossRefGoogle Scholar
  32. Wakasugi K, Schimmel P (1999b) Highly differentiated motifs responsible for two cytokine activities of a split human tRNA synthetase. J Biol Chem 274:23155–23159. doi: 10.1074/jbc.274.33.23155 CrossRefGoogle Scholar
  33. Wakasugi K, Slike BM, Hood J et al (2002a) Introduction of angiogenesis by a fragment of human tyrosyl-tRNA synthetase. J Biol Chem 277:20124–20126. doi: 10.1074/jbc.C200126200 CrossRefGoogle Scholar
  34. Wakasugi K, Slike BM, Hood J et al (2002b) A human aminoacyl-tRNA synthetase as a regulator of angiogenesis. Proc Natl Acad Sci USA 99:173–177. doi: 10.1073/pnas.012602099 CrossRefGoogle Scholar
  35. Yancopoulos GD, Klagsbrum M, Folkman J (1998) Vasculogenesis, angiogenesis and growth factors: ephrins enter the fray at the border. Cell 93:661–664. doi: 10.1016/S0092-8674(00)81426-9 CrossRefGoogle Scholar
  36. Yeh CH, Peng HC, Huang TF (1998) Accutin, a new disintegrin, inhibits angiogenesis in vitro and in vivo by acting as integrin alphavbeta-antagonist and inducing apoptosisl. J Blood 92:3268–3276Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Rui Zeng
    • 1
  • Yu-cheng Chen
    • 1
  • Zhi Zeng
    • 1
    Email author
  • Rui Liu
    • 2
  • Ou Qiang
    • 2
  • Xiao-fei Jiang
    • 1
  • Xiao-xia Liu
    • 3
  • Xian Li
    • 2
  • Hao-yu Wang
    • 1
  1. 1.Department of Cardiology, West China Hospital, School of Clinic MedicineSichuan UniversityChengduChina
  2. 2.Laboratory of Peptides Related with Human Diseases, The National Laboratory of BiomedicineSichuan UniversityChengduChina
  3. 3.Department of Epidemiology and Health Statistics, School of Public HealthSichuan UniversityChengduChina

Personalised recommendations